نتایج جستجو برای: sparse optimization
تعداد نتایج: 371252 فیلتر نتایج به سال:
We propose and analyze acceleration schemes for hard thresholding methods with applications to sparse approximation in linear inverse systems. Our acceleration schemes fuse combinatorial, sparse projection algorithms with convex optimization algebra to provide computationally efficient and robust sparse recovery methods. We compare and contrast the (dis)advantages of the proposed schemes with t...
Number: 193 Optimization of Sparse Matrix Kernels for Data
Sparse coding represents a signal by a linear combination of only a few atoms of a learned over-complete dictionary. While sparse coding exhibits compelling performance for various machine learning tasks, the process of obtaining sparse code with fixed dictionary is independent for each data point without considering the geometric information and manifold structure of the entire data. We propos...
We describe a new library named picasso, which implements a unified framework of pathwise coordinate optimization for a variety of sparse learning problems (e.g., sparse linear regression, sparse logistic regression, sparse Poisson regression and sparse square root loss linear regression), combined with efficient active set selection strategies. Besides, the library allows users to choose diffe...
We present a new Gaussian process (GP) regression model whose covariance is parameterized by the the locations ofM pseudo-input points, which we learn by a gradient based optimization. We take M N , where N is the number of real data points, and hence obtain a sparse regression method which has O(MN) training cost and O(M) prediction cost per test case. We also find hyperparameters of the covar...
Approximate inference via information projection has been recently introduced as a generalpurpose technique for efficient probabilistic inference given sparse variables. This manuscript goes beyond classical sparsity by proposing efficient algorithms for approximate inference via information projection that are applicable to any structure on the set of variables that admits enumeration using ma...
We introduce an `1 sparse method for the reconstruction of a piecewise smooth point set surface. The technique is motivated by recent advancements in sparse signal reconstruction. The assumption underlying our work is that common objects, even geometrically complex ones, can typically be characterized by a rather small number of features. This, in turn, naturally lends itself to incorporating t...
The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of line...
In statistical text analysis, many learning problems can be formulated as a minimization of a sum of a loss function and a regularization function for a vector of parameters (feature coefficients). The loss function drives the model to learn generalizable patterns from the training data, whereas the regularizer plays two important roles: to prevent the models from capturing idiosyncrasies of th...
This survey provides a brief introduction to compressed sensing as well as several major algorithms to solve it and its various applications to communications systems. We firstly review linear simultaneous equations as ill-posed inverse problems, since the idea of compressed sensing could be best understood in the context of the linear equations. Then, we consider the problem of compressed sens...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید