we discuss the asymptotic behaviour of solutions for the nonlocal quasilinear hyperbolic problem of kirchhoff type [ u_{tt}-phi (x)||nabla u(t)||^{2}delta u+delta u_{t}=|u|^{a}u,, x in mathbb{r}^{n} ,,tgeq 0;,]with initial conditions $u(x,0) = u_0 (x)$ and $u_t(x,0) = u_1 (x)$, in the case where $n geq 3, ; delta geq 0$ and $(phi (x))^{-1} =g (x)$ is a positive function lying in $l^{n/2}(mathb...