نتایج جستجو برای: signed total roman k
تعداد نتایج: 1176208 فیلتر نتایج به سال:
This paper is motivated by the concept of the signed k-domination problem and dedicated to the complexity of the problem on graphs. For any fixed nonnegative integer k, we show that the signed k-domination problem is NP-complete for doubly chordal graphs. For strongly chordal graphs and distance-hereditary graphs, we show that the signed k-domination problem can be solved in polynomial time. We...
This paper studies the maximum-clique independence problem and some variations of clique transversal such as {k}-clique, maximum-clique, minus clique, signed k-fold problems from algorithmic aspects for k-trees, suns, planar graphs, doubly chordal perfect total split line dually graphs. We give equations to compute numbers show that {k}-clique is polynomial-time solvable graphs whose equal thei...
Let D = (V,A) be a finite simple directed graph (shortly digraph) in which dD(v) ≥ 1 for all v ∈ V . A function f : V −→ {−1, 1} is called a signed total dominating function if ∑ u∈N−(v) f(u) ≥ 1 for each vertex v ∈ V . A set {f1, f2, . . . , fd} of signed total dominating functions on D with the property that ∑d i=1 fi(v) ≤ 1 for each v ∈ V (D), is called a signed total dominating family (of f...
We introduce a family of multi-way Cheeger-type constants {h k , k = 1, 2, . . . , N} on a signed graph Γ = (G, σ) such that h k = 0 if and only if Γ has k balanced connected components. These constants are switching invariant and bring together in a unified viewpoint a number of important graph-theoretical concepts, including the classical Cheeger constant, the non-bipartiteness parameter of D...
for any integer $kgeq 1$, a set $s$ of vertices in a graph $g=(v,e)$ is a $k$-tuple total dominating set of $g$ if any vertex of $g$ is adjacent to at least $k$ vertices in $s$, and any vertex of $v-s$ is adjacent to at least $k$ vertices in $v-s$. the minimum number of vertices of such a set in $g$ we call the $k$-tuple total restrained domination number of $g$. the maximum num...
A function f : V (G) → {+1,−1} defined on the vertices of a graph G is a signed dominating function if for any vertex v the sum of function values over its closed neighborhood is at least 1. The signed domination number γs(G) of G is the minimum weight of a signed dominating function on G. By simply changing “{+1,−1}” in the above definition to “{+1, 0,−1}”, we can define the minus dominating f...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید