نتایج جستجو برای: signed k domination number

تعداد نتایج: 1501556  

2016
Jernej Azarija Yoomi Rho Seungbo Sim

The Fibonacci cube Γn is the subgraph of the n-dimensional cube Qn induced by the vertices that contain no two consecutive 1s. Using integer linear programming, exact values are obtained for γt(Γn), n ≤ 12. Consequently, γt(Γn) ≤ 2Fn−10 + 21Fn−8 holds for n ≥ 11, where Fn are the Fibonacci numbers. It is proved that if n ≥ 9, then γt(Γn) ≥ d(Fn+2 − 11)/(n− 3)e−1. Using integer linear programmin...

Journal: :Discussiones Mathematicae Graph Theory 2015

Journal: :Discussiones Mathematicae Graph Theory 2015

Journal: :transactions on combinatorics 2013
jafar amjadi hossein karami seyed mahmoud sheikholeslami lutz volkmann

a {em roman dominating function} on a graph $g = (v ,e)$ is a function $f : vlongrightarrow {0, 1, 2}$ satisfying the condition that every vertex $v$ for which $f (v) = 0$ is adjacent to at least one vertex $u$ for which $f (u) = 2$. the {em weight} of a roman dominating function is the value $w(f)=sum_{vin v}f(v)$. the roman domination number of a graph $g$, denoted by $gamma_r(g)$, equals the...

Journal: :Appl. Math. Lett. 2011
Ermelinda DeLaViña Wayne Goddard Michael A. Henning Ryan Pepper Emil R. Vaughan

The k-domination number of a graph is the cardinality of a smallest set of vertices such that every vertex not in the set is adjacent to at least k vertices of the set. We prove two bounds on the k-domination number of a graph, inspired by two conjectures of the computer program Graffiti.pc. In particular, we show that for any graph with minimum degree at least 2k − 1, the k-domination number i...

Journal: :Discrete Mathematics 2004
Liying Kang Hye Kyung Kim Moo Young Sohn

A function f de1ned on the vertices of a graph G = (V; E); f :V → {−1; 0; 1} is a minus dominating function if the sum of its values over any closed neighborhood is at least one. The weight of a minus dominating function is f(V ) = ∑ v∈V f(v). The minus domination number of a graph G, denoted by −(G), equals the minimum weight of a minus dominating function of G. In this paper, a sharp lower bo...

Journal: :Discrete Applied Mathematics 2012
Gerard J. Chang Paul Dorbec Mickaël Montassier André Raspaud

In this paper, we introduce the concept of k-power domination which is a common generalization of domination and power domination. We extend several known results for power domination to k-power domination. Concerning the complexity of the k-power domination problem, we first show that deciding whether a graph admits a k-power dominating set of size at most t is NP-complete for chordal graphs a...

2012
S. A. Mane B. N. Waphare

In this paper we consider the (d, n)-domination number, γd,n(Qn), the distance-d domination number γd(Qn) and the connected distance-d domination number γc,d(Qn) of ndimensional hypercube graphs Qn. We show that for 2 ≤ d ≤ bn/2c, and n ≥ 4, γd,n(Qn) ≤ 2n−2d+2, improving the bound of Xie and Xu [19]. We also show that γd(Qn) ≤ 2n−2d+2−r, for 2 − 1 ≤ n − 2d + 1 < 2 − 1, and γc,d(Qn) ≤ 2n−d, for ...

Journal: :bulletin of the iranian mathematical society 2014
m. n. iradmusa

for any $k in mathbb{n}$, the $k$-subdivision of graph $g$ is a simple graph $g^{frac{1}{k}}$, which is constructed by replacing each edge of $g$ with a path of length $k$. in [moharram n. iradmusa, on colorings of graph fractional powers, discrete math., (310) 2010, no. 10-11, 1551-1556] the $m$th power of the $n$-subdivision of $g$ has been introduced as a fractional power of $g$, denoted by ...

2010
S. M. Sheikholeslami L. Volkmann

Let G be a finite and simple graph with vertex set V (G), and let f : V (G) → {−1, 1} be a two-valued function. If k ≥ 1 is an integer and ∑x∈N(v) f(x) ≥ k for each v ∈ V (G), where N(v) is the neighborhood of v, then f is a signed total k-dominating function on G. A set {f1, f2, . . . , fd} of signed total k-dominating functions on G with the property that ∑d i=1 fi(x) ≤ k for each x ∈ V (G), ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید