نتایج جستجو برای: sequential forward feature selection

تعداد نتایج: 714124  

2011
Abdelghani Harrag Mohamed Boudiaf Tayeb Mohamadi

Feature extraction is the process of deriving new weakly correlated features from the original features in order to reduce the cost of feature measurement, increase classifier efficiency, and allows higher classification accuracy. The selection and quality of the features representing each pattern have considerable bearing on the success of subsequent pattern classification. In this paper, we s...

Javad Haddadnia, Mona Azizi Zeynab Mohammadpoory

Introduction: Epileptic seizure detection is a key step for both researchers and epilepsy specialists for epilepsy assessment due to the non-stationariness and chaos in the electroencephalogram (EEG) signals. Current research is directed toward the development of an efficient method for epilepsy or seizure detection based the limited penetrable visibility graph (LPVG) algorith...

Journal: :Entropy 2016
Nantian Huang Zhiqiang Hu Guowei Cai Dongfeng Yang

Abstract: A feature selection method based on the generalized minimum redundancy and maximum relevance (G-mRMR) is proposed to improve the accuracy of short-term load forecasting (STLF). First, mutual information is calculated to analyze the relations between the original features and the load sequence, as well as the redundancy among the original features. Second, a weighting factor selected b...

Journal: :Computer Vision and Image Understanding 2010
Paul L. Rosin

This paper describes the application of cellular automata (CA) to various image processing tasks such as denoising and feature detection. Whereas our previous work mainly dealt with binary images, the current work operates on intensity images. The increased number of cell states (i.e. pixel intensities) leads to a vast increase in the number of possible rules. Therefore, a reduced intensity rep...

2004
Ludmila Kuncheva C. Whitaker P. Cockcroft Z. S. Hoare

Suppose that the only available information in a multi-class problem are expert estimates of the conditional probabilities of occurrence for a set of binary features. The aim is to select a subset of features to be measured in subsequent data collection experiments. In the lack of any information about the dependencies between the features, we assume that all features are conditionally independ...

2013
Robert Dürichen Tobias Wissel Floris Ernst Achim Schweikard

In robotic radiotherapy, systematic latencies have to be compensated by prediction of external optical surrogates. We investigate possibilities to increase the prediction accuracy using multi-modal sensors. The measurement setup includes position, acceleration, strain and flow sensors. To select the most relevant and least redundant information from the sensors and to limit the size of the feat...

2004
Ludmila I. Kuncheva Christopher J. Whitaker Peter D. Cockcroft Z. S. J. Hoare

Suppose that the only available information in a multi-class problem are expert estimates of the conditional probabilities of occurrence for a set of binary features. The aim is to select a subset of features to be measured in subsequent data collection experiments. In the lack of any information about the dependencies between the features, we assume that all features are conditionally independ...

Journal: :Bioinformatics 2006
Chao Sima Edward R. Dougherty

MOTIVATION High-throughput technologies for rapid measurement of vast numbers of biological variables offer the potential for highly discriminatory diagnosis and prognosis; however, high dimensionality together with small samples creates the need for feature selection, while at the same time making feature-selection algorithms less reliable. Feature selection must typically be carried out from ...

2003
Alexey Tsymbal Mykola Pechenizkiy Pádraig Cunningham

Ensembles of learnt models constitute one of the main current directions in machine learning and data mining. Ensembles allow us to achieve higher accuracy, which is often not achievable with single models. It was shown theoretically and experimentally that in order for an ensemble to be effective, it should consist of high-accuracy base classifiers that should have high diversity in their pred...

2014
Michela Antonelli Pietro Ducange Francesco Marcelloni Armando Segatori

Fuzzy rule-based models have been extensively used in regression problems. Besides high accuracy, one of the most appreciated characteristics of these models is their interpretability, which is generally measured in terms of complexity. Complexity is affected by the number of features used for generating the model: the lower the number of features, the lower the complexity. Feature selection ca...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید