نتایج جستجو برای: semidefinite optimization

تعداد نتایج: 321432  

Journal: :SIAM Journal on Optimization 2017
Gábor Pataki

Duality theory plays a central role in semidefinite programming, since in optimization algorithms a dual solution serves as a certificate of optimality. However, in semidefinite duality pathological phenomena occur: nonattainment of the optimal value, positive duality gaps, and infeasibility of the dual, even when the primal is bounded. We say that the semidefinite system PSD = {x | ∑m i=1 xiAi...

Journal: :Discrete Optimization 2017
Timothy Lee John E. Mitchell

Semidefinite relaxations of certain combinatorial optimization problems lead to approximation algorithms with performance guarantees. For large-scale problems, it may not be computationally feasible to solve the semidefinite relaxations to optimality. In this paper, we investigate the effect on the performance guarantees of an approximate solution to the semidefinite relaxation for MaxCut, Max2...

2008
Chunhua Shen Alan Welsh Lei Wang

In this work, we consider the problem of learning a positive semidefinite matrix. The critical issue is how to preserve positive semidefiniteness during the course of learning. Our algorithm is mainly inspired by LPBoost [1] and the general greedy convex optimization framework of Zhang [2]. We demonstrate the essence of the algorithm, termed PSDBoost (positive semidefinite Boosting), by focusin...

2005
Giuseppe Calafiore Basilio Bona

In this paper, we develop a numerically efficient scheme for setmembership prediction and filtering for discrete-time nonlinear systems, that takes into explicit account the effects of nonlinearities via local second-order information. The filtering scheme is based on a classical prediction/update recursion that requires at each step the solution of a convex semidefinite optimization problem. T...

Journal: :SIAM Journal on Optimization 2010
Michel Journée Francis R. Bach Pierre-Antoine Absil Rodolphe Sepulchre

We propose an algorithm for solving optimization problems defined on a subset of the cone of symmetric positive semidefinite matrices. This algorithm relies on the factorization X = Y Y T , where the number of columns of Y fixes an upper bound on the rank of the positive semidefinite matrix X. It is thus very effective for solving problems that have a low-rank solution. The factorization X = Y ...

Journal: :SIAM Journal on Optimization 2011
Etienne de Klerk Monique Laurent

The Lasserre hierarchy of semidefinite programming approximations to convex polynomial optimization problems is known to converge finitely under some assumptions. [J.B. Lasserre. Convexity in semialgebraic geometry and polynomial optimization. SIAM J. Optim. 19, 1995–2014, 2009.] We give a new proof of the finite convergence property, that does not require the assumption that the Hessian of the...

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

2001
Pablo A. Parrilo Bernd Sturmfels

We compare algorithms for global optimization of polynomial functions in many variables. It is demonstrated that existing algebraic methods (Gröbner bases, resultants, homotopy methods) are dramatically outperformed by a relaxation technique, due to N.Z. Shor and the first author, which involves sums of squares and semidefinite programming. This opens up the possibility of using semidefinite pr...

Journal: :European Journal of Operational Research 2010
Jie Sun Su Zhang

We propose a modified alternate direction method for solving convex quadratically constrained quadratic semidefinite optimization problems. The method is a first-order method, therefore requires much less computational effort per iteration than the second-order approaches such as the interior point methods or the smoothing Newton methods. In fact, only a single inexact metric projection onto th...

2003
Joachim Dahl Bernard H. Fleury Lieven Vandenberghe

We consider semidefinite relaxations of a quadratic optimization problem with polynomial constraints. This is an extension of quadratic problems with boolean variables. Such combinatorial problems can in general not be solved in polynomial time. Semidefinite relaxations has been proposed as a promising technique to give provable good bounds on certain boolean quadratic problems in polynomial ti...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید