نتایج جستجو برای: schur

تعداد نتایج: 4437  

2008
Sarah Mason

Symmetric functions are vital to the study of combinatorics because they provide valuable information about partitions and permutations, topics which constitute the core of the subject. The significance of symmetric function theory is manifest by its connections to other branches of mathematics, including group theory, representation theory, Lie algebras, and algebraic geometry. One important b...

Journal: :Applied Mathematics and Computation 2009
Ljiljana Cvetkovic Maja Nedovic

It is well known, see [D. Carlson, T. Markham, Schur complements of diagonally dominant matrices, Czech. Math. Schur complement of a strictly diagonally dominant matrix is strictly diagonally dominant , as well as its diagonal-Schur complement. Also, if a matrix is an H-matrix, then its Schur complement and diagonal-Schur complement are H-matrices, too, see [J. Liu, Y. Huang, Some properties on...

2011
Daniel Bump Peter J. McNamara Fumihiro Sato

Factorial Schur functions are generalizations of Schur functions that have, in addition to the usual variables, a second family of “shift” parameters. We show that a factorial Schur function times a deformation of the Weyl denominator may be expressed as the partition function of a particular statistical-mechanical system (six-vertex model). The proof is based on the Yang-Baxter equation. There...

1999
r. m. green

We introduce an analogue of the q-Schur algebra associated to Coxeter systems of type b A n?1. We give two constructions of this algebra. The rst construction realizes the algebra as a certain endomorphism algebra arising from an aane Hecke algebra of type b A r?1 , where n r. This generalizes the original q-Schur algebra as deened by Dipper and James, and the new algebra contains the ordinary ...

2009
STEPHEN DONKIN RUDOLF TANGE

Let k be an algebraically closed field of characteristic p > 0, let m, r be integers with m ≥ 1, r ≥ 0 and m ≥ r and let S0(2m, r) be the symplectic Schur algebra over k as introduced by the first author. We introduce the symplectic Schur functor, derive some basic properties of it and relate this to work of Hartmann and Paget. We do the same for the orthogonal Schur algebra. We give a modified...

2007
Albert W. Marshall

insisting that the equality sign holds when k = n. Here, x[X] > • • • > x[n] are the xt arranged in decreasing order and, similarly, y[X] > • • • > y[n]. If (1) is only required for the increasing (decreasing) convex functions on R then one speaks of weak sub-majorization x >, respectively). The first is equivalent to (2). Let & be an open convex subset of R...

Journal: :J. Global Optimization 2012
Roman Sznajder M. Seetharama Gowda Melania M. Moldovan

In a recent article [8], Gowda and Sznajder studied the concept of Schur complement in Euclidean Jordan algebras and described Schur determinantal and Haynsworth inertia formulas. In this article, we establish some more results on the Schur complement. Specifically, we prove, in the setting of Euclidean Jordan algebras, an analogue of the Crabtree-Haynsworth quotient formula and show that any S...

2013
Stephanie van Willigenburg

In the Hopf algebra of symmetric functions, Sym, the basis of Schur functions is distinguished since every Schur function is isomorphic to an irreducible character of a symmetric group under the Frobenius characteristic map. In this note we show that in the Hopf algebra of noncommutative symmetric functions, NSym, of which Sym is a quotient, the recently discovered basis of noncommutative Schur...

Journal: :Eur. J. Comb. 2012
Peter R. W. McNamara Stephanie van Willigenburg

The Schur-positivity order on skew shapes is defined by B ≤ A if the difference sA − sB is Schur-positive. It is an open problem to determine those connected skew shapes that are maximal with respect to this ordering. A strong necessary condition for the Schur-positivity of sA−sB is that the support of B is contained in that of A, where the support of B is defined to be the set of partitions λ ...

1999
R. M. Green

We introduce an analogue of the q-Schur algebra associated to Coxeter systems of type A n−1. We give two constructions of this algebra. The first construction realizes the algebra as a certain endomorphism algebra arising from an affine Hecke algebra of type A r−1 , where n ≥ r. This generalizes the original q-Schur algebra as defined by Dipper and James, and the new algebra contains the ordina...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید