نتایج جستجو برای: ricci curvature

تعداد نتایج: 44758  

2002
THOMAS IVEY

In this short article we show that there are no compact three-dimensional Ricci solitons other than spaces of constant curvature. This generalizes a result obtained for surfaces by Hamilton [4]. The proof involves a careful analysis of the ODE for the curvature which is associated to the Ricci flow.

1995
Ying Shen

Using an analogue of Myers’ theorem for minimal surfaces and three dimensional topology, we prove the diameter sphere theorem for Ricci curvature in dimension three and a corresponding eigenvalue pinching theorem. This settles these two problems for closed manifolds with positive Ricci curvature since they are both false in dimensions greater than three. §

2008
Jun LING

We give a new estimate on the lower bound for the first Dirichlet eigenvalue for a compact manifold with positive Ricci curvature in terms of the in-diameter and the lower bound of the Ricci curvature. The result improves the previous estimates.

2017
Shouhei Honda

We call a Gromov-Hausdorff limit of complete Riemannian manifolds with a lower bound of Ricci curvature a Ricci limit space. In this paper, we prove that any Ricci limit space has integral Hausdorff dimension provided that its Hausdorff dimension is not greater than two. We also classify one-dimensional Ricci limit spaces.

2007
LI MA BAIYU LIU

In this paper, we study the evolution of L p-forms under Ricci flow with bounded curvature on a complete non-compact or a compact Riemannian manifold. We show that under curvature pinching conditions on such a manifold, the L norm of a smooth p-form is non-increasing along the Ricci flow. The L∞ norm is showed to have monotonicity property too.

2008
Jun LING

We give a new estimate on the lower bound for the first Dirichlet eigenvalue for the compact manifolds with boundary and positive Ricci curvature in terms of the diameter and the lower bound of the Ricci curvature and give an affirmative answer to the conjecture of P. Li for the Dirichlet eigenvalue.

2007
Changyu Xia CHANGYU XIA

We find a new sharp Caffarelli-Kohn-Nirenberg inequality and show that the Euclidean spaces are the only complete non-compact Riemannian manifolds of nonnegative Ricci curvature satisfying this inequality. We also show that a complete open manifold with non-negative Ricci curvature in which the optimal Nash inequality holds is isometric to a Euclidean space.

1997
David Wraith

We consider performing surgery on Riemannian manifolds with positive Ricci curvature. We nd conditions under which the resulting manifold also admits a positive Ricci curvature metric. These conditions involve dimension and the form taken by the metric in a neighbourhood of the surgery.

2012
David Wraith

If π : M → B is a Riemannian Submersion and M has positive sectional curvature, O’Neill’s Horizontal Curvature Equation shows that B must also have positive curvature. We show there are Riemannian submersions from compact manifolds with positive Ricci curvature to manifolds that have small neighborhoods of (arbitrarily) negative Ricci curvature, but that there are no Riemannian submersions from...

2011
Shiping Liu SHIPING LIU

In Riemannian geometry, Ricci curvature controls how fast geodesics emanating from a common source are diverging on average, or equivalently, how fast the volume of distance balls grows as a function of the radius. Recently, such ideas have been extended to Markov processes and metric spaces. Employing a definition of generalized Ricci curvature proposed by Ollivier and applied in graph theory ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید