نتایج جستجو برای: regressive conditional heteroscedasticity garch model

تعداد نتایج: 2147628  

2003
Felix Chan Michael McAleer

The univariate Generalised Autoregressive Conditional Heterscedasticity (GARCH) model has successfully captured the symmetric conditional volatility in a wide range of time series financial returns. Although multivariate effects across assets can be captured through modelling the conditional correlations, the univariate GARCH model has two important restrictions in that it: (1) does not accommo...

2007
Turan G. Bali David Weinbaum

This paper introduces a conditional extreme value volatility estimator (EVT) based on highfrequency returns. The relative performance of the EVT is compared with the discrete-time GARCH and implied volatility models for 1-day and 20-day-ahead forecasts of realized volatility. This is also a first attempt towards detecting any time-series variation in extreme value distributions using high-frequ...

2013
Ranjit Kumar Paul Himadri Ghosh

INTRODUCTION Box Jenkins’ linear autoregressive integrated moving average (ARIMA) methodology is widely used for analyzing time-series data. Beyond ‘linear’ domain, there are many nonlinear forms to be explored. In fact, nonlinear time-series analysis has been one of the major areas of research in Time-series analysis for more than two decades now. These models are generally more appropriate th...

Journal: :Jurnal Sains dan Seni ITS (e-journal) 2023

Data finansial yang mengikuti deret waktu memiliki keragaman atau volatilitas setiap waktunya tidak konstan. Keadaan ini disebut sebagai heteroskedastisitas. Metode dapat menyelesaikan masalah tersebut adalah Autoregressive Conditional Heteroscedasticity (ARCH)/Generalized (GARCH). Namun, ARCH/GARCH mengatasi beberapa kasus seperti perbedaan dalam nilai leverage effect. Sehingga dilakukan pemod...

Journal: :Expert Syst. Appl. 2011
Erkam Güresen Gülgün Kayakutlu Tugrul U. Daim

Forecasting stock exchange rates is an important financial problem that is receiving increasing attention. During the last few years, a number of neural network models and hybrid models have been proposed for obtaining accurate prediction results, in an attempt to outperform the traditional linear and nonlinear approaches. This paper evaluates the effectiveness of neural network models which ar...

2016
Yan Jiang Guoqing Xinyan PENG Yongle LI

In order to improve the safety of train operation, a short-term wind speed forecasting method is proposed based on a linear recursive autoregressive integrated moving average (ARIMA) algorithm and a non-linear recursive generalized autoregressive conditionally heteroscedastic (GARCH) algorithm (ARIMA-GARCH). Firstly, the non-stationarity embedded in the original wind speed data is pre-processed...

Journal: :Journal of Business & Economic Statistics 1996

امیرحسین گرجی رضا راعی, میثم محمودی آذر

  بی‌قاعدگی آب‌وهوا [1] یکی از بی‌قاعدگی‌هایی [2] است که در ادبیات دانش مالی رفتاری [3] مورد توجه محققان قرارگرفته است. در این پژوهش تلاش کردیم، به کمک مدل‌های اقتصادسنجی با فرایند گارچ [4] رابطۀ میان بازدهی بورس اوراق بهادار و متغیرهای آب‌وهوایی شامل دمای هوا، میزان پوشش ابر، سرعت وزش باد و میزان دید در تهران را بررسی کنیم. همچنین، با توجه به شرایط خاص و گاهی بحرانی شهر تهران ازنظر آلودگی هوا،...

2014
STEVE S. CHUNG Steve S. Chung Kyle Gallivan Wei Wu

The autoregressive conditional heteroskedasticity (ARCH) and generalized autoregressive conditional heteroskedasticity (GARCH) models take the dependency of the conditional second moments. The idea behind ARCH/GARCH model is quite intuitive. For ARCH models, past squared innovations describes the present squared volatility. For GARCH models, both squared innovations and the past squared volatil...

Journal: :Mathematics and Computers in Simulation 2009
Monica Billio Massimiliano Caporin

We propose a generalization of the Dynamic Conditional Correlation multivariate GARCH model of Engle (2002) and of the Asymmetric Dynamic Conditional Correlation model of Cappiello et al. (2006). The model we propose introduces a block structure in parameter matrices that allows for interdependence with a reduced number of parameters. Our model nests the Flexible Dynamic Conditional Correlation...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید