نتایج جستجو برای: random matrix theory

تعداد نتایج: 1342429  

Journal: :The Annals of Applied Probability 2020

Journal: :Annual Review of Nuclear and Particle Science 2000

2017
Jeffrey Pennington Pratik Worah

Neural network configurations with random weights play an important role in the analysis of deep learning. They define the initial loss landscape and are closely related to kernel and random feature methods. Despite the fact that these networks are built out of random matrices, the vast and powerful machinery of random matrix theory has so far found limited success in studying them. A main obst...

Journal: :Nuclear Physics B - Proceedings Supplements 2000

Journal: :Computer Methods in Applied Mechanics and Engineering 2005

Journal: :Physica A: Statistical Mechanics and its Applications 2007

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید