نتایج جستجو برای: poisson boltzmann equation
تعداد نتایج: 267226 فیلتر نتایج به سال:
In the remainder, we call such a variety a convex symplectic variety. A convex symplectic variety has been studied in [K-V], [Ka 1] and [G-K]. One of main difficulties we meet is the fact that tangent objects TX and T 1 Y are not finite dimensional, since Y may possibly have non-isolated singularities; hence the usual deformation theory does not work well. Instead, in [K-V], [G-K], they introdu...
In the remainder, we call such a variety a convex symplectic variety. A convex symplectic variety has been studied in [K-V], [Ka 1] and [G-K]. One of main difficulties we meet is the fact that tangent objects TX and T 1 Y are not finite dimensional, since Y may possibly have non-isolated singularities; hence the usual deformation theory does not work well. Instead, in [K-V], [G-K], they introdu...
Recent Progress in Numerical Methods for the Poisson- Boltzmann Equation in Biophysical Applications
Efficiency and accuracy are two major concerns in numerical solutions of the Poisson-Boltzmann equation for applications in chemistry and biophysics. Recent developments in boundary element methods, interface methods, adaptive methods, finite element methods, and other approaches for the Poisson-Boltzmann equation as well as related mesh generation techniques are reviewed. We also discussed the...
The Poisson-Boltzmann equation is a partial differential equation that describes the electrostatic behavior of molecules in ionic solutions. Significant efforts have been devoted to accurate and efficient computation for solving this equation. In this paper, we developed a boundary element framework based on the linear time fast multipole method for solving the linearized PoissonBoltzmann equat...
We present a derivation of generalized Poisson-Boltzmann equations starting from classical theories of binary fluid mixtures, employing an approach based on the Legendre transform as recently applied to the case of local descriptions of the fluid free energy. Under specific symmetry assumptions, and in the linearized regime, the Poisson-Boltzmann equation reduces to a phenomenological equation ...
Electrostatics plays a fundamental role in virtually all processes involving biomolecules in solution. The Poisson-Boltzmann equation constitutes one of the most fundamental approaches to treat electrostatic effects in solution. The theoretical basis of the Poisson-Boltzmann equation is reviewed and a wide range of applications is presented, including the computation of the electrostatic potent...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید