نتایج جستجو برای: nonnegative signed total roman domination
تعداد نتایج: 840992 فیلتر نتایج به سال:
The aim of this paper is to obtain closed formulas for the perfect domination number, Roman number and lexicographic product graphs. We show that these can be obtained relatively easily case first two parameters. picture quite different when it concerns number. In case, we general bounds then give sufficient and/or necessary conditions achieved. also discuss graphs characterize where equals
For any integer k ≥ 1, a signed (total) k-dominating function is a function f : V (G) → {−1, 1} satisfying w∈N [v] f(w) ≥ k ( P w∈N(v) f(w) ≥ k) for every v ∈ V (G), where N(v) = {u ∈ V (G)|uv ∈ E(G)} and N [v] = N(v)∪{v}. The minimum of the values ofv∈V (G) f(v), taken over all signed (total) k-dominating functions f, is called the signed (total) k-domination number and is denoted by γkS(G) (γ...
Let G be a simple graph without isolated vertices with vertex set V (G) and edge set E(G) and let k be a positive integer. A function f : E(G) −→ {±1,±2, . . . ,±k} is said to be a signed star {k}-dominating function on G if ∑ e∈E(v) f(e) ≥ k for every vertex v of G, where E(v) = {uv ∈ E(G) | u ∈ N(v)}. The signed star {k}-domination number of a graph G is γ{k}SS(G) = min{ ∑ e∈E f(e) | f is a S...
In this paper, we study the signed total domination number in graphs and present new sharp lower and upper bounds for this parameter. For example by making use of the classic theorem of Turán [8], we present a sharp lower bound on Kr+1-free graphs for r ≥ 2. Applying the concept of total limited packing we bound the signed total domination number of G with δ(G) ≥ 3 from above by n−2b 2ρo(G)+δ−3...
Define a Roman dominating function (RDF) of a graph G to be a function f : V (G) → {0, 1, 2} such that every u with f(u) = 0 has a neighbor v with f(v) = 2. The weight of f , w(f), is ∑ v∈V (G) f(v). The Roman domination number of G, γR(G), is the minimum weight of an RDF of G. It is easy to see that γ(G) ≤ γR(G) ≤ 2γ(G), where γ(G) is the domination number of G. In this paper, we determine pro...
A function f : V (G) → {+1,−1} defined on the vertices of a graph G is a signed dominating function if for any vertex v the sum of function values over its closed neighborhood is at least 1. The signed domination number γs(G) of G is the minimum weight of a signed dominating function on G. By simply changing “{+1,−1}” in the above definition to “{+1, 0,−1}”, we can define the minus dominating f...
Recent articles by ReVelle [20, 21] in the Johns Hopkins Magazines suggested a new variation of domination called Roman domination, see also [22] for an integer programming formulation of the problem. Since then, there have been several articles on Roman domination and its variations [2, 3, 4, 5, 6, 11, 12, 14, 15, 16, 18, 24, 23, 25]. Emperor Constantine had the requirement that an army or leg...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید