نتایج جستجو برای: non central principal component analysis
تعداد نتایج: 4632641 فیلتر نتایج به سال:
Principal component analysis (PCA) is a multivariate technique that analyzes a data table in which observations are described by several inter-correlated quantitative dependent variables. Its goal is to extract the important information from the table, to represent it as a set of new orthogonal variables called principal components, and to display the pattern of similarity of the observations a...
Problem Statement Experimental data to be analyzed is often represented as a number of vectors of fixed dimensionality. A single vector could for example be a set of temperature measurements across Germany. Taking such a vector of measurements at different times results in a number of vectors that altogether constitute the data. Each vector can also be interpreted as a point in a high dimension...
Principal component analysis (PCA) is widely used in data processing and dimensionality reduction. However, PCA suffers from the fact that each principal component is a linear combination of all the original variables, thus it is often difficult to interpret the results. We introduce a new method called sparse principal component analysis (SPCA) using the lasso (elastic net) to produce modified...
Recently, many l1-norm based PCA methods have been developed for dimensionality reduction, but they do not explicitly consider the reconstruction error. Moreover, they do not take into account the relationship between reconstruction error and variance of projected data. This reduces the robustness of algorithms. To handle this problem, a novel formulation for PCA, namely angle PCA, is proposed....
When modeling multivariate data, one might have an extra parameter of contextual information that could be used to treat some observations as more similar to others. For example, images of faces can vary by age, and one would expect the face of a 40 year old to be more similar to the face of a 30 year old than to a baby face. We introduce a novel manifold approximation method, parameterized pri...
Principal components analysis (PCA) is a dimensionality reduction technique that can be used to give a compact representation of data while minimising information loss. Suppose we are given a set of data, represented as vectors in a high-dimensional space. It may be that many of the variables are correlated and that the data closely fits a lower dimensional linear manifold. In this case, PCA fi...
We propose two new principal component analysis methods in this paper utilizing a semiparametric model. The according methods are named Copula Component Analysis (COCA) and Copula PCA. The semiparametric model assumes that, after unspecified marginally monotone transformations, the distributions are multivariate Gaussian. The COCA and Copula PCA accordingly estimate the leading eigenvectors of ...
Principal Component Analysis (PCA) aims to learn compact and informative representations for data and has wide applications in machine learning, text mining and computer vision. Classical PCA based on a Gaussian noise model is fragile to noise of large magnitude. Laplace noise assumption based PCA methods cannot deal with dense noise effectively. In this paper, we propose Cauchy Principal Compo...
Principal component analysis (PCA) has been applied to analyze random fields in various scientific disciplines. However, the explainability of PCA remains elusive unless strong domain-specific knowledge is available. This paper provides a theoretical framework that builds duality between eigenmodes field and eigenstates Schr\"odinger equation. Based on we propose algorithm replace expensive sol...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید