نتایج جستجو برای: node polynomials
تعداد نتایج: 207969 فیلتر نتایج به سال:
In this study, the Bernoulli polynomials are used to obtain an approximate solution of a class of nonlinear two-dimensional integral equations. To this aim, the operational matrices of integration and the product for Bernoulli polynomials are derived and utilized to reduce the considered problem to a system of nonlinear algebraic equations. Some examples are presented to illustrate the efficien...
The main focus of this paper is on efficiency analysis of two kinds of approximating functions (characteristic orthogonal polynomials and characteristic beam functions) that have been applied in the Rayleigh-Ritz method to determine the non-dimensional buckling and frequency parameters of an angle ply symmetric laminated composite plate with fully elastic boundaries. It has been observed that o...
Recently, Tremblay, Gaboury and Fugère introduced a class of the generalized Bernoulli polynomials (see Tremblay in Appl. Math. Let. 24:1888-1893, 2011). In this paper, we introduce and investigate an extension of the generalized Apostol-Euler polynomials. We state some properties for these polynomials and obtain some relationships between the polynomials and Apostol-Bernoulli polynomials, Stir...
direct regenerations by using mature cotyledonary node as a explants has been shown to be time-saving and convenient strategy for micropropagation of soybean. so we have evaluated regeneration protocol through single shoot using cotyledonary node as a rapid and efficient protocol for two soybean cultivars and one mutant line. cotyledonary nodes explants obtained from 7-days-old in vitro seedlin...
from the early 1950s, estimating the autocorrelations of polynomials with coefficients on the unit circle has found applications in ising spin systems and in surface acoustic wave designs. in this paper, a technique is introduced that not only estimates the autocorrelations, but for some special types of such polynomials, it locates the frequencies at which maximum autocorrelation occurs.
in this paper we introduce a type of fractional-order polynomials basedon the classical chebyshev polynomials of the second kind (fcss). also we construct the operationalmatrix of fractional derivative of order $ gamma $ in the caputo for fcss and show that this matrix with the tau method are utilized to reduce the solution of some fractional-order differential equations.
We analyze adaptive mesh-refining algorithms for conforming finite element discretizations of certain non-linear second-order partial differential equations. We allow continuous polynomials of arbitrary, but fixed polynomial order. The adaptivity is driven by the residual error estimator. We prove convergence even with optimal algebraic convergence rates. In particular, our analysis covers gene...
An accurate numerical technique for the numerical simulation of 1D reacting flow problems is implemented. The technique is based on nodal discontinuous Galerkin finite element method that makes use of high order approximating polynomials within each element to capture the physics of reacting flow phenomena. High performance computing is achieved through parallelization of the computer code usin...
Gauss–Legendre quadrature rules are of considerable theoretical and practical interest because of their role in numerical integration and interpolation. In this paper, a series expansion for the zeros of the Legendre polynomials is constructed. In addition, a series expansion useful for the computation of the Gauss–Legendre weights is derived. Together, these two expansions provide a practical ...
In this paper, we study the asymptotics of the discrete Chebyshev polynomials tn(z,N) as the degree grows to infinity. Global asymptotic formulas are obtained as n → ∞, when the ratio of the parameters n/N = c is a constant in the interval (0, 1). Our method is based on a modified version of the Riemann-Hilbert approach first introduced by Deift and Zhou.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید