نتایج جستجو برای: multiplicative zagreb eccentricity indices

تعداد نتایج: 104169  

The first and second Zagreb indices of a graph are equal, respectively, to the sum of squares of the vertex degrees, and the sum of the products of the degrees of pairs of adjacent vertices. We now consider analogous graph invariants, based on the second degrees of vertices (number of their second neighbors), called leap Zagreb indices. A number of their basic properties is established.

2011
QUNQIANG FENG ZHISHUI HU FENGAND Z. HU

We investigate the Zagreb index, one of the topological indices, of random recursive trees in this paper. Through a recurrence equation, the first two moments of Zn, the Zagreb index of a random recursive tree of size n, are obtained. We also show that the random process {Zn − E[Zn], n ≥ 1} is a martingale. Then the asymptotic normality of the Zagreb index of a random recursive tree is given by...

2016
K. Pattabiraman

For a (molecular) graph, the hyper Zagreb index is defined as HM(G) = ∑ uv∈E(G) (dG(u) + dG(v)) 2 and the hyper Zagreb coindex is defined asHM(G) = ∑ uv/ ∈E(G) (dG(u)+dG(v)) 2. In this paper, the hyper Zagreb indices and its coindices of edge corona product graph, double graph and Mycielskian graph are obtained.

Topological indices are widely used as mathematical tools to analyze different types of graphs emerged in a broad range of applications. The Hyper-Zagreb index (HM) is an important tool because it integrates the first two Zagreb indices. In this paper, we characterize the trees and unicyclic graphs with the first four and first eight greatest HM-value, respectively.

2012
Kexiang Xu Kinkar Ch. Das Kechao Tang Dalibor Fronček

Abstract. For a (molecular) graph G with vertex set V (G) and edge set E(G), the first and second Zagreb indices of G are defined as M1(G) = ∑ v∈V (G) dG(v) 2 and M2(G) = ∑ uv∈E(G) dG(u)dG(v), respectively, where dG(v) is the degree of vertex v in G. The alternative expression of M1(G) is ∑ uv∈E(G)(dG(u) + dG(v)). Recently Ashrafi, Došlić and Hamzeh introduced two related graphical invariants M...

2015
Yun Gao Wei Gao Li Liang

Chemical compounds and drugs are often modelled as graphs where each vertex represents an atom of molecule, and covalent bounds between atoms are represented by edges between the corresponding vertices. This graph derived from a chemical compounds is often called its molecular graph, and can be different structures. In this paper, by virtue of mathematical derivation, we determine the fourth, f...

2012
Mehdi Eliasi Ali Iranmanesh Ivan Gutman

The first Zagreb index of a graph G, with vertex set V (G) and edge set E(G), is defined as M1(G) = ∑ u∈V (G) d(u) 2 where d(u) denotes the degree of the vertex v. An alternative expression for M1(G) is ∑ uv∈E(G)[d(u) + d(v)]. We consider a multiplicative version of M1 defined as Π∗1(G) = ∏ uv∈E(G)[d(u) + d(v)]. We prove that among all connected graphs with a given number of vertices, the path ...

Journal: :Discrete Applied Mathematics 2010
Ali Reza Ashrafi Tomislav Doslic Asma Hamzeh

Recently introduced Zagreb coindices are a generalization of classical Zagreb indices of chemical graph theory. We explore here their basic mathematical properties and present explicit formulae for these new graph invariants under several graph operations.

Journal: :Symmetry 2021

A connected graph G is said to be a cactus if any two cycles have at most one vertex in common. The multiplicative sum Zagreb index of the product degrees adjacent vertices G. In this paper, we introduce several transformations that are useful tools for study extremal properties index. Using these and symmetric structural representations some graphs, determine graphs having maximal with prescri...

2015
Vijaya Kumari

The first and second zagreb indices of a graph G are defined as M1(G) = ∑ uv∈E(G) [deg(u) + deg(v)] (or equivalently ∑ u∈V (G) [deg(u)2] and M2(G) = ∑ uv∈E(G) [deg(u)deg(v)] respectively. In this paper, we have obtained the first and second zagreb indices of the generalized complementary prisms Gm+n,Gm,n,G m,m and Gm,m. MSC: 05C15, 05C38.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید