نتایج جستجو برای: multilayer perceptron ann
تعداد نتایج: 47757 فیلتر نتایج به سال:
The Langevin updating rule, in which noise is added to the weights during learning, is presented and shown to improve learning on problems with initially ill-conditioned Hessians. This is particularly important for multilayer perceptrons with many hidden layers, that often have ill-conditioned Hessians. In addition, Manhattan updating is shown to have a similar eeect.
In this study, an artificial neural network was used to predict the minimum force required to single point incremental forming (SPIF) of thin sheets of Aluminium AA3003-O and calamine brass Cu67Zn33 alloy. Accordingly, the parameters for processing, i.e., step depth, the feed rate of the tool, spindle speed, wall angle, thickness of metal sheets and type of material were selected as input and t...
This paper presents the use of a neural network and a decision tree, which is evolved by genetic programming (GP), in thalassaemia classification. The aim is to differentiate between thalassaemic patients, persons with thalassaemia trait and normal subjects by inspecting characteristics of red blood cells, reticulocytes and platelets. A structured representation on genetic algorithms for non-li...
This study focuses on development, characterization and validation of an artificial neural network (ANN) model for prediction of advanced oxidation of organics in water matrix. The different ANNs, based on multilayer perceptron (MLP) and radial basis function (RBF) methodologies, have been applied for modeling of the behavior of complex system; zero-valent iron activated persulfate oxidation (F...
Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...
Five classification algorithms namely J48, Naive Bayes, Multilayer Perceptron, IBK and Bayes Net are evaluated using Mc Nemar’s test over datasets including both nominal and numeric attributes. It was found that Multilayer Perceptron performed better than the two other classification methods for both nominal and numerical datasets. Furthermore, it was observed that the results of our evaluation...
Porosity is considered as an important petrophysical parameter in characterizing reservoirs, calculating in-situ oil reserves, and production evaluation. Nowadays, using intelligent techniques has become a popular method for porosity estimation. Support vector machine (SVM) a new intelligent method with a great generalization potential of modeling non-linear relationships has been introduced fo...
Artificial neural network was considered in previous studies for prediction of engine performance and emissions. ICA methodology was inspired in order to optimize the weights of multilayer perceptron (MLP) of artificial neural network so that closer estimation of output results can be achieved. Current paper aimed at prediction of engine power, soot, NOx, CO2, O2, and temperature with the ai...
This research uses the multilayer perceptron (MLP) model to predict daily evaporation at two synoptic stations located in Rasht and Manjil, Guilan province, in north-west of Iran. Initially the most important combinations of climatic parameters for both of the stations were identified using the gamma test; and daily evaporation were modeled based on the obtained optimal combination. The results...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید