نتایج جستجو برای: multi objective linearprogramming
تعداد نتایج: 986592 فیلتر نتایج به سال:
While evolutionary computing inspired approaches to multi-objective optimization have many advantages over conventional approaches; they generally do not explicitly exploit directional/gradient information. This can be inefficient if the underlying objectives are reasonably smooth, and this may limit the application of such approaches to real-world problems. This paper develops a local framewor...
This paper sets out a number of the popular areas from the literature in multi-objective supervised learning, along with simple examples. It continues by highlighting some specific areas of interest/concern when dealing with multi-objective supervised learning problems, and highlights future areas of potential research.
The versatility that genetic algorithm (GA) has proved to have for solving different problems, has make it the first choice of researchers to deal with new challenges. Currently, GAs are the most well known evolutionary algorithms, because their intuitive principle of operation and their relatively simple implementation; besides they have the ability to reflect the philosophy of evolutionary co...
Real world optimization problems are often too complex to be solved through analytical means. Evolutionary algorithms, a class of algorithms that borrow paradigms from nature, are particularly well suited to address such problems. These algorithms are stochastic methods of optimization that have become immensely popular recently, because they are derivative-free methods, are not as prone to get...
A multi-condition multi-objective optimization method that can find Pareto front over a defined condition space is developed for the first time using deep reinforcement learning. Unlike conventional methods which perform at single condition, present learns correlations between conditions and optimal solutions. The exclusive capability of examined in solutions novel modified Kursawe benchmark pr...
Real world problems often present multiple, frequently conflicting, objectives. The research for optimal solutions of multi-objective problems can be achieved through means of genetic algorithms, which are inspired by the natural process of evolution: an initial population of solutions is randomly generated, then pairs of solutions are selected and combined in order to create new solutions slig...
Topic Modeling (TM) is a rapidly-growing area at the interfaces of text mining, artificial intelligence and statistical modeling, that is being increasingly deployed to address the ’information overload’ associated with extensive text repositories. The goal in TM is typically to infer a rich yet intuitive summary model of a large document collection, indicating a specific collection of topics t...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید