نتایج جستجو برای: monadic category
تعداد نتایج: 82944 فیلتر نتایج به سال:
By abstract Stone duality we mean that the topology or contravariant powerset functor, seen as a self-adjoint exponential Σ on some category, is monadic. Using Beck’s theorem, this means that certain equalisers exist and carry the subspace topology. These subspaces are encoded by idempotents that play a role similar to that of nuclei in locale theory. Paré showed that any elementary topos has t...
This work expounds the notion that (structured) categories are syntax free presentations of type theories, and shows some of the ideas involved in deriving categorical semantics for given type theories. It is intended for someone who has some knowledge of category theory and type theory, but who does not fully understand some of the intimate connections between the two topics. We begin by showi...
Consider a diagram of quasi-categories that admit and functors that preserve limits or colimits of a fixed shape. We show that any weighted limit whose weight is a projective cofibrant simplicial functor is again a quasi-category admitting these (co)limits and that they are preserved by the functors in the limit cone. In particular, the BousfieldKan homotopy limit of a diagram of quasi-categori...
Impagliazzo et al. proposed a framework, based on the logic fragment defining the complexity class SNP, to identify problems that are equivalent to k-CNF-Sat modulo subexponential-time reducibility (serf-reducibility). The subexponential-time solvability of any of these problems implies the failure of the Exponential Time Hypothesis (ETH). In this paper, we extend the framework of Impagliazzo e...
We study the succinctness of monadic second-order logic and a variety of monadic fixed point logics on trees. All these languages are known to have the same expressive power on trees, but some can express the same queries much more succinctly than others. For example, we show that, under some complexity theoretic assumption, monadic second-order logic is non-elementarily more succinct than mona...
As already known [14], the mu-calculus [17] is as expressive as the bisimulation invariant fragment of monadic second order Logic (MSO). In this paper, we relate the expressiveness of levels of the fixpoint alternation depth hierarchy of the mu-calculus (the mu-calculus hierarchy) with the expressiveness of the bisimulation invariant fragment of levels of the monadic quantifiers alternation-dep...
Pure type systems and computational monads are two parameterized frameworks that have proved to be quite useful in both theoretical and practical applications. We join the foundational concepts of both of these to obtain monadic type systems. Essentially, monadic type systems inherit the parameterized higher-order type structure of pure type systems and the monadic term and type structure used ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید