let $g$ be a connected graph with vertex set $v(g)$. the degree resistance distance of $g$ is defined as $d_r(g) = sum_{{u,v} subseteq v(g)} [d(u)+d(v)] r(u,v)$, where $d(u)$ is the degree of vertex $u$, and $r(u,v)$ denotes the resistance distance between $u$ and $v$. in this paper, we characterize $n$-vertex unicyclic graphs having minimum and second minimum degree resista...