We investigate the variety of residuated lattices with a commutative and idempotent monoid reduct. A residuated lattice is an algebra A = (A,∨,∧, ·, e, /, \) such that (A,∨,∧) is a lattice, (A, ·, e) is a monoid and for every a, b, c ∈ A ab ≤ c ⇔ a ≤ c/b ⇔ b ≤ a\c. The last condition is equivalent to the fact that (A,∨,∧, ·, e) is a lattice-ordered monoid and for every a, b ∈ A there is a great...