Let χ be a primitive, real and even Dirichlet character with conductor q, and let s be a positive real number. An old result of H. Davenport is that the cycle sums Sν(s, χ) = ∑(ν+1)q−1 n=νq+1 χ(n) ns , ν = 0, 1, 2, . . . , are all positive at s = 1, and this has the immediate important consequence of the positivity of L(1, χ). We extend Davenport’s idea to show that in fact for ν ≥ 1, Sν(s, χ) ...