نتایج جستجو برای: light trapping
تعداد نتایج: 415999 فیلتر نتایج به سال:
The fovea centralis is a closely-packed vertical array of inverted-cone photoreceptor cells located in the retina that is responsible for high acuity binocular vision. The cones are operational in well-lit environments and are responsible for trapping the impinging illumination. We present the vertical light-funnel silicon array as a light-trapping technique for photovoltaic applications that i...
The light absorption of a monolayer graphene-molybdenum disulfide photovoltaic (GM-PV) cell in a wedge-shaped microcavity with a spectrum-splitting structure is investigated theoretically. The GM-PV cell, which is three times thinner than the traditional photovoltaic cell, exhibits up to 98% light absorptance in a wide wavelength range. This rate exceeds the fundamental limit of nanophotonic li...
Baker's yeast (Saccharomyces cerevisiae) represents a very popular single-celled eukaryotic model organism which has been studied extensively by various methods and whose genome has been completely sequenced. It was also among the first living organisms that were manipulated by optical tweezers and it is currently a frequent subject of optical micromanipulation experiments. We built a microflui...
Optical trapping using focused laser beams has emerged as a powerful tool in the biological and physical sciences. However, scaling this technique to nanosized objects remains challenging due to the diffraction limit of light and the high power levels required for nanoscale trapping. In this paper, we propose plasmonic coaxial apertures as low-power optical traps for nanosized specimens. The il...
We report the first experimental realization of all-optical trapping and manipulation of plasmonic nanowires in three dimensions. The optical beam used for trapping is the Fourier transform of a linearly polarized Bessel beam (termed FT-Bessel). The extended depth of focus of this beam enables the use of a retroreflection geometry to cancel radiation pressure in the beam propagation direction, ...
Optical tweezers are often applied to control the dynamics of objects by scanning light. However, there is a limitation that objects fail to track the scan when the drag exceeds the trapping force. In contrast, Laguerre-Gaussian (LG) beams can directly control the torque on objects and provide a typical model for nonequilibrium systems such as Brownian motion under external fields. Although sta...
One of major approaches to cheaper solar cells is reducing the amount of semiconductor material used for their fabrication and making cells thinner. To compensate for lower light absorption such physically thin devices have to incorporate light-trapping which increases their optical thickness. Light scattering by textured surfaces is a common technique but it cannot be universally applied to al...
We show how two-photon fluorescence signal can be used as an effective detection scheme for trapping particles of any size in comparison to methods using back-scattered light. Development of such a diagnostic scheme allows us a direct observation of trapping a single nanoparticle, which shows new directions to spectroscopy at the single-molecule level in solution.
In this study, we sought to improve the light trapping of textured silicon solar cells using the plasmonic light scattering of indium nanoparticles (In NPs) of various dimensions. The light trapping modes of textured-silicon surfaces with and without In NPs were investigated at an angle of incidence (AOI) ranging from 0° to 75°. The optical reflectance, external quantum efficiency (EQE), and ph...
nanostructures of noble metal materials have been used in organic solar cells for enhancement of performance and light trapping. in this study, we have introduced branched silver cauliflower-like nanopatterns as sub-wavelength structured metal grating in organic solar cells. self-assembled fabrication process of branched nanopatterns was carried out on a bio-template of cicada wing nanonipple a...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید