For a connected reductive group $G$ defined over $\mathbb{F}_q$ and equipped with the induced Frobenius endomorphism $F$, we study relation among following three $\mathbb{Z}$-algebras: (i) $\mathbb{Z}$-model $\mathsf{E}_G$ of algebras Gelfand-Graev representations $G^F$; (ii) Grothendieck $\mathsf{K}_{G^\ast}$ category $G^{\ast F^\ast}$ $\overline{\mathbb{F}_q}$ (Deligne-Lusztig dual side); (ii...