نتایج جستجو برای: laguerre polynomials
تعداد نتایج: 39597 فیلتر نتایج به سال:
We establish a large n complete asymptotic expansion for q-Laguerre polynomials and a complete asymptotic expansion for a q-Bessel function of large argument. These expansions are needed in our study of an exactly solvable random transfer matrix model for disordered electronic systems. We also give a new derivation of an asymptotic formula due to Littlewood (1907).
0. Introduction 1. Borel decomposition and the 2-Toda lattice 2. Two-Toda τ -functions and Pfaffian τ̃ -functions 3. The Pfaffian Toda lattice and skew-orthogonal polynomials 4. The (s = −t)-reduction of the Virasoro vector fields 5. A representation of the Pfaffian τ̃ -function as a symmetric matrix integral 6. String equations and Virasoro constraints 7. Virasoro constraints with boundary terms...
Using the theory of orthogonal polynomials, their associated recursion relations and differential formulas we develop a new method for evaluating integrals that include orthogonal polynomials. The method is illustrated by obtaining the following integral result that involves the Bessel function and associated Laguerre polynomial: integral(infinity)(0) x(v)e(-x/2) J(v)(mu x)L-n(2v)(x)dx = 2(v)Ga...
The standard block orthogonal (SBO) polynomials Pi;n(x), 0 ≤ i ≤ n are real polynomials of degree n which are orthogonal with respect to a first Euclidean scalar product to polynomials of degree less than i. In addition, they are mutually orthogonal with respect to a second Euclidean scalar product. Applying the general results obtained in a previous paper, we determine and investigate these po...
For a class of orthogonal polynomials related to the q-Meixner polynomials corresponding to an indeterminate moment problem we give a one-parameter family of orthogonality measures. For these measures we complement the orthogonal polynomials to an orthogonal basis for the corresponding weighted L-space explicitly. The result is proved in two ways; by a spectral decomposition of a suitable opera...
We show that the Meixner, Pollaczek, Meixner-Pollaczek and Al-Salam-Chihara polynomials, in certain normalization, are moments of probability measures. We use this fact to derive bilinear and multilinear generating functions for some of these polynomials. We also comment on the corresponding formulas for the Charlier, Hermite and Laguerre polynomials. Running Title: Generating Functions
We consider a sequence of polynomials that are orthogonal with respect to a complex analytic weight function which depends on the index n of the polynomial. For such polynomials we obtain an asymptotic expansion in 1/n. As an example, we present the asymptotic expansion for Laguerre polynomials with a weight that depends on the index of the polynomial.
In this paper we propose a Lagrangian method for solving Lane-Emden equation which is a nonlinear ordinary differential equation on semi-infinite interval. This approach is based on a Modified generalized Laguerre functions Lagrangian method. The method reduces the solution of this problem to the solution of a system of algebraic equations. We also present the comparison of this work with some ...
We describe the behavior as n → ∞ of the Laplace transforms of P, where P a fixed complex polynomial. As a consequence we obtain a new elementary proof of an result of Gillis-Ismail-Offer [2] in the combinatorial theory of derangements. 1 Statement of the main results The generalized derangement problem in combinatorics can be formulated as follows. Suppose X is a finite set and ∼ is an equival...
We show that a certain generalized beta function B(x; y; b) which reduces to Euler’s beta functions B(x; y) when its variable b vanishes and preserves symmetry in its parameters may be represented in terms of a nite number of well known higher transcendental functions except (possibly) in the case when one of its parameters is an integer and the other is not. In the latter case B(x; y; b) may b...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید