Consider a nonlinear Kirchhoff type equation as follows \begin{equation*} \begin{cases} \displaystyle - \Big ( a\int_{\mathbb{R}^{N}}|\nabla u|^{2}dx+b ) \Delta u+u=f(x)\left\vert u\right\vert ^{p-2}u & \text{ in }\mathbb{R}^{N}, \\[2mm] u\in H^{1}(\mathbb{R}^{N}), \end{cases} \end{equation*} where $N\geq 1,a,b > 0, 2 < p \min \left\{ 4,2^{\ast }\right\}$($2^{\ast }=\infty $ for $N=1,2$ and $2^...