نتایج جستجو برای: keywords forecasting
تعداد نتایج: 2009047 فیلتر نتایج به سال:
Financial forecasting is an example of signal processing problems. A number of ways to train/learn the network are available. We have used Levenberg-Marquardt algorithm for error back-propagation for weight adjustment. Pre-processing of data has reduced much of the variation at large scale to small scale, reducing the variation of training data. Keywords— Gradient descent method, jacobian matri...
This article deals with the recognition of recurring multivariate time series patterns modelled sample-point-wise by parametric fuzzy sets. An efficient classification-based approach for the online recognition of incompleted developing patterns in streaming time series is being presented. Furthermore, means are introduced to enable users of the recognition system to restrict results to certain ...
In forecasting the operation of the manufacturing industry in the 21st century, the authors recently proposed “science SQC” as a demonstrative-scientific methodology and discussed its effectiveness on the basis of verification studies conducted by Toyota Motor Corporation. This study outlines a new SQC principle “science SQC”, as a demonstrative-scientific methodology, which enables the princip...
This paper describes interconnection between technical and economical making decision. The reason of this dealing could be different: poor technical condition, change of substation (electrical network) regime, power transformer owner budget deficit and increasing of tariff on electricity. Establishing of recommended practice as well as to give general advice and guidance in economical sector, t...
Financial forecasting is an example of signal processing problems. A number of ways to train/learn the network are available. We have used Levenberg-Marquardt algorithm for error back-propagation for weight adjustment. Pre-processing of data has reduced much of the variation at large scale to small scale, reducing the variation of training data. Keywords— Gradient descent method, jacobian matri...
A new methodology for analysis and forecasting of time series is proposed. It directly employs two techniques: the fuzzy transform and the perception-based logical deduction. Due to the usage of both of them and due to the innovative approach consisting in a construction of several independent models, the methodology is successfully applicable for robust long time predictions. Keywords— Time se...
A new predictor algorithm based on Bayesian enhanced approach (BEA) for long-term chaotic time series using artificial neural networks (ANN) is presented. The technique based on stochastic models uses Bayesian inference by means of Fractional Brownian Motion as model data and Beta model as prior information. However, the need of experimental data for specifying and estimating causal models has ...
Time series forecasting is an important and widely popular topic in the research of system modeling. This paper describes how to use the hybrid PSO-RLSE neuro-fuzzy learning approach to the problem of time series forecasting. The PSO algorithm is used to update the premise parameters of the proposed prediction system, and the RLSE is used to update the consequence parameters. Thanks to the hybr...
Careful planning of the electrical power sector is of great importance since the decisions to be taken involves the commitment of large resources, with potentially serious economic risks for the electrical utility and the economy as a whole. There are different types of techniques available for analysis and prediction of randomly varying parameters. They are classified as statistical, intellige...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید