We prove a Cohen-Macaulay version of result by Avramov-Golod and Frankild-J{\o}rgensen about Gorenstein rings, showing that if noetherian ring $A$ is Cohen-Macaulay, $a_1,\dots,a_n$ any sequence elements in $A$, then the Koszul complex $K(A;a_1,\dots,a_n)$ DG-ring. further generalize this result, it also holds for commutative DG-rings. In process proving this, we develop new technique to study ...