نتایج جستجو برای: ideal graph of a commutative ring

تعداد نتایج: 23297436  

2013
Ali RAMIN

Let R be a commutative ring with Z(R) , its set of zero-divisors and Reg(R) , its set of regular elements. Total graph of R , denoted by T (Γ(R)) , is the graph with all elements of R as vertices, and two distinct vertices x, y ∈ R , are adjacent in T (Γ(R)) if and only if x+ y ∈ Z(R) . In this paper, some properties of T (Γ(R)) have been investigated, where R is a finite commutative ring and a...

Let M be an Artinian module over the commutative ring A (with nonzero identity) and a p spec A be such that a is a finitely generated ideal of A and aM = M. Also suppose that H = H where H. = M/ (0: a )for i

ژورنال: پژوهش های ریاضی 2019

Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...

Journal: :journal of algebraic system 0
a. naghipour department of mathematics, shahrekord university, p.o. box 115, shahrekord, iran.

let $r$ be a commutative ring with identity and $m$ an $r$-module. in this paper, we associate a graph to $m$, say ${gamma}({}_{r}m)$, such that when $m=r$, ${gamma}({}_{r}m)$ coincide with the zero-divisor graph of $r$. many well-known results by d.f. anderson and p.s. livingston have been generalized for ${gamma}({}_{r}m)$. we show that ${gamma}({}_{r}m)$ is connected with ${diam}({gamma}({}_...

Reza Jahani-Nezhad,

Let R be a commutative integral domain with quotient field K and let P be a nonzero strongly prime ideal of R. We give several characterizations of such ideals. It is shown that (P : P) is a valuation domain with the unique maximal ideal P. We also study when P^{&minus1} is a ring. In fact, it is proved that P^{&minus1} = (P : P) if and only if P is not invertible. Furthermore, if P is invertib...

2007
HAMID REZA MAIMANI

Let R be a commutative ring with identity and let I be an ideal of R. Let R 1 I be the subring of R×R consisting of the elements (r,r + i) for r ∈ R and i ∈ I. We study the diameter and girth of the zero-divisor graph of the ring R 1 I.

Throughout this paper, R will denote a commutative ring with identity and M is a unitary R- module and Z will denote the ring of integers. We introduce the graph Ω(M) of module M with the set of vertices contain all nontrivial non-essential submodules of M. We investigate the interplay between graph-theoretic properties of Ω(M) and algebraic properties of M. Also, we assign the values of natura...

Let $(R,m)$ be a commutative Noetherian local ring, $M$ a finitely generated $R$-module of dimension $d$, and let $I$ be an ideal of definition for $M$. In this paper, we extend cite[Corollary 10(4)]{P} and also we show that if $M$ is a Cohen-Macaulay $R$-module and $d=2$, then $lambda(frac{widetilde{I^nM}}{Jwidetilde{I^{n-1}M}})$ does not depend on $J$ for all $ngeq 1$, where $J$ is a minimal ...

Let R be a commutative Noetherian ring, I an ideal of R and M a non-zero R-module. In this paper we calculate the extension of annihilator of local cohomology modules H^t_I(M), t≥0, under the ring extension R⊂R[X] (resp. R⊂R[[X]]). By using this extension we will present some of the faithfulness conditions of local cohomology modules, and show that if the Lynch's conjecture, i...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید