Let W be an operator weight taking values almost everywhere in the bounded positive invertible linear operators on a separable Hilbert space H. We show that if W and its inverse W−1 both satisfy a matrix reverse Hölder property introduced in [2], then the weighted Hilbert transform H : LW (R,H) → L 2 W (R,H) and also all weighted dyadic martingale transforms Tσ : LW (R,H)→ L 2 W (R,H) are bound...