نتایج جستجو برای: generalized jacobi polynomials
تعداد نتایج: 208523 فیلتر نتایج به سال:
An elementary non-technical introduction to group representations and orthogonal polynomials is given. Orthogonality relations for the spherical functions for the rotation groups in Euclidean space (ultraspherical polynomials), and the matrix elements of SU(2) (Jacobi polynomials) are discussed. A general theory for finite groups acting on graphs, giving a finite set of discrete orthogonal poly...
We introduce here a generalization of the modified Bernstein polynomials for Jacobi weights using the q-Bernstein basis proposed by G.M. Phillips to generalize classical Bernstein Polynomials. The function is evaluated at points which are in geometric progression in ]0, 1[. Numerous properties of the modified Bernstein Polynomials are extended to their q-analogues: simultaneous approximation, p...
Small perturbations of the Jacobi matrix with weights √ n and zero diagonal are considered. A formula relating the asymptotics of polynomials of the first kind to the spectral density is obtained, which is analogue of the classical Weyl-Titchmarsh formula for the Schrödinger operator on the half-line with summable potential. Additionally a base of generalized eigenvectors for ”free” Hermite ope...
This paper introduces two families of orthogonal polynomials on the interval (-1,1), with weight function [Formula: see text]. The first family satisfies the boundary condition [Formula: see text], and the second one satisfies the boundary conditions [Formula: see text]. These boundary conditions arise naturally from PDEs defined on a disk with Dirichlet boundary conditions and the requirement ...
We provide the mathematical foundation for the Xm-Jacobi spectral theory. Namely, we present a self-adjoint operator associated to the differential expression with the exceptional Xm-Jacobi orthogonal polynomials as eigenfunctions. This proves that those polynomials are indeed eigenfunctions of the self-adjoint operator (rather than just formal eigenfunctions). Further, we prove the completenes...
Beta ensembles on the real line with three classical weights (Gaussian, Laguerre and Jacobi) are now realized as eigenvalues of certain tridiagonal random matrices. The paper deals beta Jacobi ensembles, type weight. Making use matrix model, we show that in regime where $\beta N \to const \in [0, \infty)$, $N$ system size, empirical distribution converges weakly to a limiting measure which belo...
This paper investigates certain Jacobi polynomials that involve one parameter and generalize the well-known orthogonal called Chebyshev of third-kind. Some new formulas are developed for these polynomials. We will show some previous results in literature can be considered special ones our derived formulas. The derivatives moments derived. Hence, two important explicitly give terms their origina...
commutative properties of four-dimensional generalized symmetric pseudo-riemannian manifolds were considered. specially, in this paper, we studied skew-tsankov and jacobi-tsankov conditions in 4-dimensional pseudo-riemannian generalized symmetric manifolds.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید