نتایج جستجو برای: fuzzy networks
تعداد نتایج: 510040 فیلتر نتایج به سال:
Fuzzy controllers are designed to work with knowledge in the form of linguistic control rules. But the translation of these linguistic rules into the framework of fuzzy set theory depends on the choice of certain parameters, for which no formal method is known. The optimization of these parameters can be carried out by neural networks, which are designed to learn from training data, but which a...
A method for response integration in modular neural networks with type-2 fuzzy logic for biometric systems p. 5 Evolving type-2 fuzzy logic controllers for autonomous mobile robots p. 16 Adaptive type-2 fuzzy logic for intelligent home environment p. 26 Interval type-1 non-singleton type-2 TSK fuzzy logic systems using the hybrid training method RLS-BP p. 36 An efficient computational method to...
A shortest path problem is a practical issue in networks for real-world situations. This paper addresses the fuzzy shortest path (FSP) problem to obtain the best fuzzy path among fuzzy paths sets. For this purpose, a new efficient algorithm is introduced based on a new definition of ideal fuzzy sets (IFSs) in order to determine the fuzzy shortest path. Moreover, this algorithm is developed for ...
in this paper, the gain in ld-celp speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (pso) algorithms to optimize the structure and parameters of neural networks. elman, multi-layer perceptron (mlp) and fuzzy artmap are the candidate neural models. the optimized number of nodes in the first and second hidden layers of el...
This paper focusses on the application of intelligent control techniques (neural networks, fuzzy logic and genetic algorithms) and their hybrid forms (neuro-fuzzy networks, neuro-genetic and fuzzy-genetic algorithms) in the area of humanoid robotic systems. Overall, this survey covers a broad selection of examples that will serve to demonstrate the advantages and disadvantages of the applicatio...
This paper proposes a novel clustering algorithm for the structure learning of fuzzy neural networks. Our clustering algorithm uses the reward and penalty mechanism for the adaptation of the fuzzy neural networks prototypes at every training sample. Compared with the classical clustering algorithms, the new algorithm can on-line partition the input data, pointwise update the clusters, and self-...
Abstract: Recently, supervised artificial neural networks have obtained success to reveal and provide quantitative information concerning defects in TNDE (Thermographic NonDestructive Evaluation). Supervised neural networks may converge to local minimum and their training procedure are usually long. In this study, a neuro-fuzzy approach is applied to characterize subsurface defects in TNDE. Sim...
In neural network the connection strength of each neuron is updated through learning. Through repeated simulations of crisp neural network, we propose the idea that for each neuron in the network, we can obtain reduced model with more efficiency using wavelet based multiresolution analysis (MRA) to form wavelet based quasi fuzzy weight sets (WBQFWS). Such type of WBQFWS provides good initial so...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید