نتایج جستجو برای: fuzzy fractional differential systems
تعداد نتایج: 1559169 فیلتر نتایج به سال:
in this paper, the sinc collocation method is proposed for solving linear and nonlinear multi-order fractional differential equations based on the new definition of fractional derivative which is recently presented by khalil, r., al horani, m., yousef, a. and sababeh, m. in a new definition of fractional derivative, j. comput. appl. math. 264 (2014), 65{70. the properties of sinc functions are ...
in this paper, under appropriate oscillating behaviours of the nonlinear term, we prove some multiplicity results for a class of nonlinear fractional equations. these problems have a variational structure and we find three solutions for them by exploiting an abstract result for smooth functionals defined on a reflexive banach space. to make the nonlinear methods work, some careful analysis of t...
in this paper we apply hybrid functions of general block-pulse functions and legendre polynomials for solving linear and nonlinear multi-order fractional differential equations (fdes). our approach is based on incorporating operational matrices of fdes with hybrid functions that reduces the fdes problems to the solution of algebraic systems. error estimate that verifies a converge...
in this paper, we introduce a family of fractional-order chebyshev functions based on the classical chebyshev polynomials. we calculate and derive the operational matrix of derivative of fractional order $gamma$ in the caputo sense using the fractional-order chebyshev functions. this matrix yields to low computational cost of numerical solution of fractional order differential equations to the ...
Fuzzy differential equation is an important tool to deal with dynamic systems in fuzzy environments. However, it is difficult to find the solutions to all fuzzy differential equations. In this paper, methods to solve linear fuzzy differential equations and reducible fuzzy differential equations are given. Moreover, existence and uniqueness theorem for homogeneous fuzzy differential equations ar...
k , 0 ≤ k ≤ [α i ], 1 ≤ i ≤ n, where Dα ∗ denote Caputo fractional derivative. The RVIM, for differential equations of integer order is extended to derive approximate analytical solutions for systems of fractional differential equations. Advantage of the RVIM, is simplicity of the computations and convergent successive approximations without any restrictive assumptions or transform functions. S...
in this paper, a spectral tau method for solving fractional riccati differential equations is considered. this technique describes converting of a given fractional riccati differential equation to a system of nonlinear algebraic equations by using some simple matrices. we use fractional derivatives in the caputo form. convergence analysis of the proposed method is given an...
Obtaining analytical or numerical solution of fractional differential equations is one of the troublesome and challenging issue among mathematicians and engineers, specifically in recent years. The purpose of this paper Lie Symmetry method is developed to solve second-order fractional differential equations, based on conformable fractional derivative. Some numerical examples are presented to il...
We consider a fractional generalization of gradient systems. We use differential forms and exterior derivatives of fractional orders. Examples of fractional gradient systems are considered. We describe the stationary states of these systems. Mathematics Subject Classification (2000). 426A33, 70G60.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید