نتایج جستجو برای: fractional order derivatives
تعداد نتایج: 1049867 فیلتر نتایج به سال:
Here we derive multivariate weighted fractional representation formulae involving ordinary partial derivatives of rst order. Then we present related multivariate weighted fractional Ostrowski type inequalities with respect to uniform norm. 2010 AMS Mathematics Subject Classi cation : 26A33, 26D10, 26D15.
This communication addresses a comparison of newly presented non-integer order derivatives with and without singular kernel, namely Michele Caputo–Mauro Fabrizio (CF) CF(∂β/∂tβ) and Atangana–Baleanu (AB) AB(∂α/∂tα) fractional derivatives. For this purpose, second grade fluids flow with combined gradients of mass concentration and temperature distribution over a vertical flat plate is considered...
Fractional differential equations (FDEs) have attracted in the recent years a considerable interest due to their frequent appearance in various fields and their more accurate models of systems under consideration provided by fractional derivatives. For example, fractional derivatives have been used successfully to model frequency dependent damping behavior of many viscoelastic materials. They a...
One of the ongoing issues with fractional-order diffusion models is the design of efficient numerical schemes for the space and time discretizations. Until now, most models have relied on a low-order finite difference method to discretize both the fractional-order space and time derivatives. While the finite difference method is simple and straightforward to solve integer-order differential equ...
We extend Noether’s symmetry theorem to fractional action-like variational problems with higher-order derivatives.
We propose a discontinuous Galerkin method for fractional convection-diffusion equations with a superdiffusion operator of order α(1 < α < 2) defined through the fractional Laplacian. The fractional operator of order α is expressed as a composite of first order derivatives and a fractional integral of order 2 − α. The fractional convection-diffusion problem is expressed as a system of low order...
In a fractional Cauchy problem, the usual first order time derivative is replaced by a fractional derivative. This problem was first considered by Nigmatullin (1986), and Zaslavsky (1994) in R for modeling some physical phenomena. The fractional derivative models time delays in a diffusion process. We will give a survey of the recent results on the fractional Cauchy problem and its generalizati...
The theory of derivative of noninteger order goes back to Leibniz, Liouville, Riemann, Grunwald and Letnikov. Derivatives of fractional order have found many applications in recent studies in mechanics, physics, economics, medicine.Classes of fractional differentiable systems have studied in [10], [4]. In the first section the fractional tangent bundle to a differentiable manifold is defined, u...
This paper provides the fractional derivatives of the Caputo type for the sinc functions. It allows to use efficient numerical method for solving fractional differential equations. At first, some properties of the sinc functions and Legendre polynomials required for our subsequent development are given. Then we use the Legendre polynomials to approximate the fractional deri...
in this paper, we present a fractional mathematical model of a one-dimensional phase phase change problem (stefan problem) with latent heat a power function of position. this model includes space-time fractional derivatives in caputo sense and time dependent surface heat flux. an approximate solution of this model is obtained by optimal homotopy asymptotic method (oham) to find an approximate s...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید