نتایج جستجو برای: flp optimization problem metaheuristics hybrid algorithms

تعداد نتایج: 1465814  

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

2002
Olivia Rossi-Doria Michael Sampels Mauro Birattari Marco Chiarandini Marco Dorigo Luca Maria Gambardella Joshua D. Knowles Max Manfrin Monaldo Mastrolilli Ben Paechter Luís Paquete Thomas Stützle

The main goal of this paper is to attempt an unbiased comparison of the performance of straightforward implementations of five different metaheuristics on a university course timetabling problem. In particular, the metaheuristics under consideration are Evolutionary Algorithms, Ant Colony Optimization, Iterated Local Search, Simulated Annealing, and Tabu Search. To attempt fairness, the impleme...

2011
Xin-She Yang

Metaheuristic algorithms are becoming an important part of modern optimization. A wide range of metaheuristic algorithms have emerged over the last two decades, and many metaheuristics such as particle swarm optimization are becoming increasingly popular. Despite their popularity, mathematical analysis of these algorithms lacks behind. Convergence analysis still remains unsolved for the majorit...

2014
Le Zhang Jinnan Wu

This paper investigates the permutation flowshop scheduling problem (PFSP) with the objectives of minimizing the makespan and the total flowtime and proposes a hybrid metaheuristic based on the particle swarm optimization (PSO). To enhance the exploration ability of the hybrid metaheuristic, a simulated annealing hybrid with a stochastic variable neighborhood search is incorporated. To improve ...

S. Gholizadeh, V. Nzarpour,

Design optimization of cable-stayed bridges is a challenging optimization problem because a large number of variables is usually involved in the optimization process. For these structures the design variables are cross-sectional areas of the cables. In this study, an efficient metaheuristic algorithm namely, momentum search algorithm (MSA) is used to optimize the design of cable-stayed bridges....

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

A. Kaveh, M. Kalateh-Ahani, M.S. Masoudi,

Evolution Strategies (ES) are a class of Evolutionary Algorithms based on Gaussian mutation and deterministic selection. Gaussian mutation captures pair-wise dependencies between the variables through a covariance matrix. Covariance Matrix Adaptation (CMA) is a method to update this covariance matrix. In this paper, the CMA-ES, which has found many applications in solving continuous optimizatio...

Mahdi Sedghi, Masoud Aliakbar-Golkar,

Optimal expansion of medium-voltage power networks is a common issue in electrical distribution planning. Minimizing total cost of the objective function with technical constraints and reliability limits, make it a combinatorial problem which should be solved by optimization algorithms. This paper presents a new hybrid simulated annealing and tabu search algorithm for distribution network expan...

The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...

The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید