نتایج جستجو برای: finite p group
تعداد نتایج: 2207141 فیلتر نتایج به سال:
the non-commuting graph $nabla(g)$ of a non-abelian group $g$ is defined as follows: its vertex set is $g-z(g)$ and two distinct vertices $x$ and $y$ are joined by an edge if and only if the commutator of $x$ and $y$ is not the identity. in this paper we 'll prove that if $g$ is a finite group with $nabla(g)congnabla(bs_{n})$, then $g cong bs_{n}$, where $bs_{n}$ is the symmetric group of degre...
Let $H$, $L$ and $X$ be subgroups of a finite group$G$. Then $H$ is said to be $X$-permutable with $L$ if for some$xin X$ we have $AL^{x}=L^{x}A$. We say that $H$ is emph{$X$-quasipermutable } (emph{$X_{S}$-quasipermutable}, respectively) in $G$ provided $G$ has a subgroup$B$ such that $G=N_{G}(H)B$ and $H$ $X$-permutes with $B$ and with all subgroups (with all Sylowsubgroups, respectively) $...
Let $G$ be a finite group. The automorphism $sigma$ of a group $G$ is said to be an absolute central automorphism, if for all $xin G$, $x^{-1}x^{sigma}in L(G)$, where $L(G)$ be the absolute centre of $G$. In this paper, we study some properties of absolute central automorphisms of a given finite $p$-group.
Determining the order and the structure of the automorphism group of a finite p-group is an important problem in group theory. There have been a number of studies of the automorphism group of p-groups. Most of them deal with the order of Aut(G), the automorphism group of G, see for example [1] and [6]. Moreover various attempts have been made to find a structure for the automorphism group of a ...
let $g$ be a finite group. we construct the prime graph of $ g $,which is denoted by $ gamma(g) $ as follows: the vertex set of thisgraph is the prime divisors of $ |g| $ and two distinct vertices $ p$ and $ q $ are joined by an edge if and only if $ g $ contains anelement of order $ pq $.in this paper, we determine finite groups $ g $ with $ gamma(g) =gamma(l_3(q)) $, $2 leq q < 100 $ and prov...
let $g$ be a $p$-group of nilpotency class $k$ with finite exponent $exp(g)$ and let $m=lfloorlog_pk floor$. we show that $exp(m^{(c)}(g))$ divides $exp(g)p^{m(k-1)}$, for all $cgeq1$, where $m^{(c)}(g)$ denotes the c-nilpotent multiplier of $g$. this implies that $exp( m(g))$ divides $exp(g)$, for all finite $p$-groups of class at most $p-1$. moreover, we show that our result is an improvement...
A p-local finite group consists of a finite p-group S, together with a pair of categories which encode “conjugacy” relations among subgroups of S, and which are modelled on the fusion in a Sylow p-subgroup of a finite group. It contains enough information to define a classifying space which has many of the same properties as p-completed classifying spaces of finite groups. In this paper, we stu...
Let G = (V,E) be a simple graph with exactly n vertices and m edges. The aim of this paper is a new method for investigating nontriviality of the automorphism group of graphs. To do this, we prove that if |E| >=[(n - 1)2/2] then |Aut(G)|>1 and |Aut(G)| is even number.
Let $G$ be a group and $H$ a subgroup of $G$. $H$ is said to have semi-$Pi$-property in $G$ if there is a subgroup $T$ of $G$ such that $G=HT$ and $Hcap T$ has $Pi$-property in $T$. In this paper, investigating on semi-$Pi$-property of subgroups, we shall obtain some new description of finite groups.
a $p$-group $g$ is $p$-central if $g^{p}le z(g)$, and $g$ is $p^{2}$-abelian if $(xy)^{p^{2}}=x^{p^{2}}y^{p^{2}}$ for all $x,yin g$. we prove that for $g$ a finite $p^{2}$-abelian $p$-central $p$-group, excluding certain cases, the order of $g$ divides the order of $text{aut}(g)$.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید