نتایج جستجو برای: feedforward neural networks

تعداد نتایج: 638547  

Journal: :Mathematics 2022

When training a feedforward stochastic gradient descendent trained neural network, there is possibility of not learning batch patterns correctly that causes the network to fail in predictions areas adjacent those patterns. This problem has usually been resolved by directly adding more complexity normally increasing number layers, which means it will be heavier run on workstation. In this paper,...

Journal: :Neural Computation 1992
Stuart Geman Elie Bienenstock René Doursat

Feedforward neural networks trained by error backpropagation are examples of nonparametric regression estimators. We present a tutorial on nonparametric inference and its relation to neural networks, and we use the statistical viewpoint to highlight strengths and weaknesses of neural models. We illustrate the main points with some recognition experiments involving artificial data as well as han...

2017
Courtney J. Spoerer Patrick McClure Nikolaus Kriegeskorte

Feedforward neural networks provide the dominant model of how the brain performs visual object recognition. However, these networks lack the lateral and feedback connections, and the resulting recurrent neuronal dynamics, of the ventral visual pathway in the human and non-human primate brain. Here we investigate recurrent convolutional neural networks with bottom-up (B), lateral (L), and top-do...

2006
Ching-Han Chen Sheng-Hsien Hsieh

This paper proposes an evolutionary design methodology of multilayer feedforward neural networks based on constructive approach. We elaborate an adjustable processing element as primitive neuron model. The neural layer can be constructed by assembling several neurons. The multilayer neural network can be finally constructed through cascading several neural layers. The constructive approach faci...

Journal: :Robotics and Autonomous Systems 2000
Mehmet Önder Efe Okyay Kaynak

This paper investigates the identification of nonlinear systems by utilizing soft-computing approaches. As the identification methods, Feedforward Neural Network architecture (FNN), Radial Basis Function Neural Networks (RBFNN), Runge-Kutta Neural Networks (RKNN) and Adaptive Neuro Fuzzy Inference Systems (ANFIS) based identification mechanisms are studied and their performances are comparative...

پایان نامه :دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد شاهرود - دانشکده مهندسی معدن 1393

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Journal: :IEEE transactions on neural networks 1997
Gopathy Purushothaman Nicolaos B. Karayiannis

This paper introduces quantum neural networks (QNNs), a class of feedforward neural networks (FFNNs) inherently capable of estimating the structure of a feature space in the form of fuzzy sets. The hidden units of these networks develop quantized representations of the sample information provided by the training data set in various graded levels of certainty. Unlike other approaches attempting ...

2009
László Gál János Botzheim László T. Kóczy António E. Ruano

In our previous work we proposed some extensions of the Levenberg-Marquardt algorithm; the Bacterial Memetic Algorithm and the Bacterial Memetic Algorithm with Modified Operator Execution Order for fuzzy rule base extraction from inputoutput data. Furthermore, we have investigated fuzzy flip-flop based feedforward neural networks. In this paper we introduce the adaptation of the Bacterial Memet...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید