نتایج جستجو برای: einstein finsler metrics
تعداد نتایج: 92097 فیلتر نتایج به سال:
In this paper, it is elaborated the theory the Ricci flows for manifolds enabled with nonintegrable (nonholonomic) distributions defining nonlinear connection structures. Such manifolds provide a unified geometric arena for nonholonomic Riemannian spaces, Lagrange mechanics, Finsler geometry, and various models of gravity (the Einstein theory and string, or gauge, generalizations). We follow th...
In this paper we investigate the problem what kind of (two-dimensional) Finsler manifolds have a conformal change leaving the mixed curvature of the Berwald connection invariant? We establish a differential equation for such Finslerian energy functions and present the solutions under some simplification. As we shall see they are essentially the same as the singular Finsler metrics with constant...
Based on the previous research, in this paper we study the dual flatness of a special class of Finsler metrics called general (α, β)-metrics, which is defined by a Riemannian metric α and a 1-form β. By using a new kind of deformation technique, we construct many non-trivial explicit dually flat general (α, β)-metrics.
We study Ricci flows of some classes of physically valuable solutions in Einstein and string gravity. The anholonomic frame method is applied for generic off–diagonal metric ansatz when the field/ evolution equations are transformed into exactly integrable systems of partial differential equations. The integral varieties of such solutions, in four and five dimensional gravity, depend on arbitra...
We study Ricci flows of some classes of physically valuable solutions in Einstein and string gravity. The anholonomic frame method is applied for generic off–diagonal metric ansatz when the field/ evolution equations are transformed into exactly integrable systems of partial differential equations. The integral varieties of such solutions, in four and five dimensional gravity, depend on arbitra...
We prove that any simply connected and complete Riemannian manifold, on which a Randers metric of positive constant flag curvature exists, must be diffeomorphic to an odd-dimensional sphere, provided a certain 1-form vanishes on it. 1. Introduction. The geometry of Finsler manifolds of constant flag curvature is one of the fundamental subjects in Finsler geometry. Akbar-Zadeh [1] proved that, u...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید