نتایج جستجو برای: domination

تعداد نتایج: 7188  

Saeid Alikhani,

A graph $G$ is called $P_4$-free, if $G$ does not contain an induced subgraph $P_4$. The domination polynomial of a graph $G$ of order $n$ is the polynomial $D(G,x)=sum_{i=1}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$. Every root of $D(G,x)$ is called a domination root of $G$. In this paper we state and prove formula for the domination polynomial of no...

2016
K. Vijay-Shanker Robert Frank

The TAG adjunction operation operates by splitting a tree at one node, which we will call the adjunction site. In the resulting structure, the subtrees above and below the adjunction site are separated by, and connected with, the auxiliary tree used in the composition. As the adjunction site is thus split into two nodes, with a copy in each subtree, a natural way of formalizing the adjunction o...

2012
Abdollah Khodkar

A Roman dominating function of a graph G is a labeling f : V (G) −→ {0, 1, 2} such that every vertex with label 0 has a neighbor with label 2. The Roman domination number γR(G) of G is the minimum of ∑ v∈V (G) f(v) over such functions. The Roman domination subdivision number sdγR(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order t...

2008
Xue-Gang Chen Wai Chee Shiu Hong-Yu Chen

For a graph G = (V, E), a set S ⊆ V (G) is a total dominating set if it is dominating and both 〈S〉 has no isolated vertices. The cardinality of a minimum total dominating set in G is the total domination number. A set S ⊆ V (G) is a total restrained dominating set if it is total dominating and 〈V (G) − S〉 has no isolated vertices. The cardinality of a minimum total restrained dominating set in ...

Journal: :Journal of Graph Theory 2012
Bostjan Bresar Paul Dorbec Wayne Goddard Bert Hartnell Michael A. Henning Sandi Klavzar Douglas F. Rall

Vizing’s conjecture from 1968 asserts that the domination number of the Cartesian product of two graphs is at least as large as the product of their domination numbers. In this paper we survey the approaches to this central conjecture from domination theory and give some new results along the way. For instance, several new properties of a minimal counterexample to the conjecture are obtained an...

2007
Wing-Kai Hon Chih-Shan Liu Sheng-Lung Peng Chuan Yi Tang

The problem of monitoring an electric power system is placing as few measurement devices as possible. In graph theoretical representation, it can be considered as a variant of domination problem, namely, power domination problem. This problem is to find a minimum power domination set S of a graph G = (V,E) with S ⊆ V and S can dominate all vertices and edges through the observation rules accord...

Journal: :Appl. Math. Lett. 2006
Xue-Gang Chen

A subset S of V is called a total dominating set if every vertex in V is adjacent to some vertex in S. The total domination number γt (G) of G is the minimum cardinality taken over all total dominating sets of G. A dominating set is called a connected dominating set if the induced subgraph 〈S〉 is connected. The connected domination number γc(G) of G is the minimum cardinality taken over all min...

Journal: :Discussiones Mathematicae Graph Theory 2008
Joanna Raczek

A set D of vertices in a graph G = (V, E) is a weakly connected dominating set of G if D is dominating in G and the subgraph weakly induced by D is connected. The weakly connected domination number of G is the minimum cardinality of a weakly connected dominating set of G. The weakly connected domination subdivision number of a connected graph G is the minimum number of edges that must be subdiv...

Journal: :Australasian J. Combinatorics 2010
Nader Jafari Rad

A graph G with no isolated vertex is total domination bicritical if the removal of any pair of vertices, whose removal does not produce an isolated vertex, decreases the total domination number. In this paper we study properties of total domination bicritical graphs, and give several characterizations.

Journal: :Fundamenta Informaticae 2022

The aim of this paper is to obtain closed formulas for the perfect domination number, Roman number and lexicographic product graphs. We show that these can be obtained relatively easily case first two parameters. picture quite different when it concerns number. In case, we general bounds then give sufficient and/or necessary conditions achieved. also discuss graphs characterize where equals

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید