نتایج جستجو برای: distinction sensitive learning vector quantization

تعداد نتایج: 1091013  

Journal: :Journal of Machine Learning Research 2011
Benoît Patra

Motivated by the problem of effectively executing clustering algorithms on very large data sets, we address a model for large scale distributed clustering methods. To this end, we briefly recall some standards on the quantization problem and some results on the almost sure convergence of the competitive learning vector quantization (CLVQ) procedure. A general model for linear distributed asynch...

2016
Kohei Arai

Pursuit Reinforcement guided Competitive Learning: PRCL based on relatively fast online clustering that allows grouping the data in concern into several clusters when the number of data and distribution of data are varied of reinforcement guided competitive learning is proposed. One of applications of the proposed method is image portion retrievals from the relatively large scale of the images ...

2008
Michael Biehl Barbara Hammer Petra Schneider Thomas Villmann

In this chapter, one of the most popular and intuitive prototype-based classification algorithms, learning vector quantization (LVQ), is revisited, and recent extensions towards automatic metric adaptation are introduced. Metric adaptation schemes extend LVQ in two aspects: on the one hand a greater flexibility is achieved since the metric which is essential for the classification is adapted ac...

Journal: :Neural computation 1999
Aristidis Likas

A general technique is proposed for embedding online clustering algorithms based on competitive learning in a reinforcement learning framework. The basic idea is that the clustering system can be viewed as a reinforcement learning system that learns through reinforcements to follow the clustering strategy we wish to implement. In this sense, the reinforcement guided competitive learning (RGCL) ...

Journal: :IEEE Trans. Communications 1997
J. Pan

This paper is the extension of two-stage vector quantization–(spherical) lattice vector quantization (VQ–(S)LVQ) recently introduced by Pan and Fischer [1]. First, according to high resolution quantization theory, generalized vector quantization–lattice vector quantization (G-VQ–LVQ) is formulated in order to release the constraint of the spherical boundary for the second-stage lattice vector q...

Journal: :CoRR 2013
Anuj Sharma Shubhamoy Dey

Web 2.0 services have enabled people to express their opinions, experience and feelings in the form of user-generated content. Sentiment analysis or opinion mining involves identifying, classifying and aggregating opinions as per their positive or negative polarity. This paper investigates the efficacy of different implementations of Self-Organizing Maps (SOM) for sentiment based visualization ...

2013
Xibin Zhu Frank-Michael Schleif Barbara Hammer

Semi-supervised learning (SSL) is focused on learning from labeled and unlabeled data by incorporating structural and statistical information of the available unlabeled data. The amount of data is dramatically increasing, but few of them are fully labeled, due to cost and time constraints. This is even more challenging for non-vectorial, proximity data, given by pairwise proximity values. Only ...

2009
Frank-Michael Schleif Thomas Villmann

Neural maps and Learning Vector Quantizer are fundamental paradigms in neural vector quantization based on Hebbian learning. The beginning of this field dates back over twenty years with strong progress in theory and outstanding applications. Their success lies in its robustness and simplicity in application whereas the mathematics beyond is rather difficult. We provide an overview on recent ac...

2001
VALERI M. MLADENOV HANS HEGT HANS TOLBOOM

In this paper we consider a feature extraction approach for recognition of handwritten electrical symbols. The symbols are represented as a sequence of points. We apply a feature extraction technique to extract the most important features and then feed them for recognition to a Neural Network. We utilize a Learning Vector Quantization (LVQ) network and show its capability to recognize the symbo...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید