نتایج جستجو برای: d local cohomology modules
تعداد نتایج: 1143284 فیلتر نتایج به سال:
Let R = k[x1, . . . , xd] be the ring of polynomials in a finite number of variables over a field k and let DR|k be the corresponding ring of k-linear differential operators. The theory of DR|k-modules has been successfully applied in Commutative Algebra in order to study local cohomology modules due to the fact that, despite not being finitely generated as R-modules, they are so when considere...
We investigate the relative cohomology and relative homology theories of $F$-Gorenstein modules, consider the relations between classical and $F$-Gorenstein (co)homology theories.
In this paper, we use a characterization of R-modules N such that fdRN = pdRN to characterize Cohen-Macaulay rings in terms of various dimensions. This is done by setting N to be the dth local cohomology functor of R with respect to the maximal ideal where d is the Krull dimension of R.
D. Bayer and M. Stillman showed that Gröbner bases can be used to compute the Castelnuovo-Mumford regularity which is a measure for the vanishing of graded local cohomology modules. The aim of this paper is to show that the same method can be applied to study other cohomological invariants as well as the reduction number.
We introduce a generalization of formal local cohomology module, which we call a formal local cohomology module with respect to a pair of ideals and study its various properties. We analyze their structure, the upper and lower vanishing and non-vanishing. There are various exact sequences concerning the formal cohomology modules. Among them a MayerVietoris sequence for two ideals with respect t...
Let I ⊂ R be a graded ideal in the polynomial ring R = K[x1, . . . , xn] where K is a field, and fix a term order <. It has been shown in [17] that the Hilbert functions of the local cohomology modules of R/I are bounded by those of R/ in(I), where in(I) denotes the initial ideal of I with respect to <. In this note we study the question when the local cohomology modules of R/I and R/ in(I) hav...
where the map R/(x1 , . . . , x m n ) −→ R/(x m+1 1 , . . . , x m+1 n ) is multiplication by the image of the element x1 · · ·xn. As these descriptions suggest, H a(R) is usually not finitely generated as an R-module. However local cohomology modules have useful finiteness properties in certain cases, e.g., for a local ring (R,m), the modules H m(R) satisfy the descending chain condition. This ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید