نتایج جستجو برای: character degrees
تعداد نتایج: 191109 فیلتر نتایج به سال:
We study the finite groups G for which the set cd(G) of irreducible complex character degrees consists of the two most extreme possible values, that is, 1 and |G : Z(G)|1/2. We are easily reduced to finite p-groups, for which we derive the following group theoretical characterization: they are the p-groups such that |G : Z(G)| is a square and whose only normal subgroups are those containing G′ ...
Recently, a new conjecture on the degrees of the irreducible Brauer characters of a finite group was presented in [16]. In this paper we propose a ’local’ version of this conjecture for blocks B of finite groups, giving a lower bound for the maximal degree of an irreducible Brauer character belonging to B in terms of the dimension of B and well-known invariants like the defect and the number of...
A difficult problem in the character theory of solvable groups is to show that the number c.d. (G) of irreducible character degrees of a solvable group G is equal to or greater than d.l. (G), the derived length of G. Isaacs [4] has shown that d.l. (G) ^ 3 c.d. (G)-2 for every solvable group. Berger [1] subsequently proved that d.l. (G) < c.d. (G) when | G | is odd. This problem belongs to the c...
Denote by S the projective special linear group PSL2(q) over the field of q elements. We determine, for all values of q > 3, the degrees of the irreducible complex characters of every group H such that S 6 H 6 Aut(S). We also determine the character degrees of certain extensions of the special linear group SL2(q). Explicit knowledge of the character tables of SL2(q), GL2(q), PSL2(q), and PGL2(q...
Throughout this note, G will be a finite group, Irr(G) will be the set of irreducible characters of G, and cd(G) will be the set of character degrees of G. We consider groups where no prime divides at least three degrees in cd(G). Benjamin studied this question for solvable groups in [1]. She proved that solvable groups with this property satisfy |cd(G)| 6 6. She also presented examples to show...
In the 1970s, Isaacs conjectured that there should be a logarithmic bound for the length of solvability of a p-group G with respect to the number of different irreducible character degrees of G. So far, there are just a few partial results for this conjecture. In this note, we say that a pro-p group G has property (I) if there is a real number D = D(G) that just depends on G such that for any o...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید