نتایج جستجو برای: centre of lie algebra
تعداد نتایج: 21184059 فیلتر نتایج به سال:
The Lie algebra W = DerA is called the Witt algebra. It consists of “vector fields” f∂, f ∈ A. In particular, dimF W = dimF A = p. As any Lie algebra of derivations of a commutative algebra over F, W has a canonical structure of a restricted Lie algebra. Recall that a restricted Lie algebra is a Lie algebra over F with an additional unary (in general, non-linear) operation g 7→ g satisfying the...
We prove that every Lie algebra can be decomposed into a solvable Lie algebra and a semisimple Lie algebra. Then we show that every complex semisimple Lie algebra is a direct sum of simple Lie algebras. Finally, we give a complete classification of simple complex Lie algebras.
It is proved that the derivation algebra of a centerless perfect Lie algebra of arbitrary dimension over any field of arbitrary characteristic is complete and that the holomorph of a centerless perfect Lie algebra is complete if and only if its outer derivation algebra is centerless. Key works: Derivation, complete Lie algebra, holomorph of Lie algebra Mathematics Subject Classification (1991):...
First we recall definitions and state our problem. Let G be a real connected Lie group, L be its Lie algebra (i.e. the set of all right-invariant vector fields on G). For any A;B1; : : : ; Bm 2 L we consider the corresponding affine right-invariant system = fA+ m Xi=1 uiBi j 8i ui 2 Rg The attainable set A for the system is a subsemigroup of G generated by one-parameter semigroups f exp(tX) j X...
Multisymplectic geometry is a generalization of symplectic geometry suitable for n-dimensional field theories, in which the nondegenerate 2-form of symplectic geometry is replaced by a nondegenerate (n + 1)-form. The case n = 2 is relevant to string theory: we call this ‘2-plectic geometry.’ Just as the Poisson bracket makes the smooth functions on a symplectic manifold into a Lie algebra, the ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید