نتایج جستجو برای: cauchy jensen functional equations
تعداد نتایج: 821919 فیلتر نتایج به سال:
We show how to get new results on Ulam stability of some functional equations using the Banach limit. do this with examples linear equation in single variable and Cauchy equation.
In this paper we derive several improved forms of the Jensen inequality, giving the necessary and sufficient conditions for them to hold in the case of the real Stieltjes measure not necessarily positive. The obtained relations are characterized via the Green function. As an application, our main results are employed for constructing some classes of exponentially convex functions and some Cauch...
In 1940 S.M. Ulam proposed the famous Ulam stability problem. In 1941 D.H. Hyers solved the well-known Ulam stability problem for additive mappings subject to the Hyers condition on approximately additive mappings. In this paper we introduce generalized additive mappings of Jensen type mappings and establish new theorems about the Ulam stability of additive and alternative additive mappings.
The packing of hard-core particles in contact with their neighbors is a statically determinate problem. probability functional method allows deriving the full system equations for stress tensor components analytically. For an isotropic and homogeneous two-dimensional packing, we derive classical Euler–Cauchy Navier equations; latter expressing terms Airy function.
Let lK be a commutative field and (P, +) be a uniquely 2-divisible group (not necessarily abelian). We characterize all functions T: IK -+ P such that the Cauchy difference T(s+ t) T(t) T(s) depends only on the product st for all s, t E ~{. Further, we apply this result to describe solutions of the functional equation F(s + t) = K(st) 0 H(s) 0 G(t), where the unknown functions F, K, H, G map th...
ABSTRACT. We extend a recent result on third and fourth-order Cauchy-Euler equations by establishing the Hyers-Ulam stability of higher-order linear non-homogeneous Cauchy-Euler dynamic equations on time scales. That is, if an approximate solution of a higher-order Cauchy-Euler equation exists, then there exists an exact solution to that dynamic equation that is close to the approximate one. We...
One of the interesting questions concerning the stability problems of functional equations is as follows: when is it true that a mapping satisfying a functional equation approximately must be close to the solution of the given functional equation? Such an idea was suggested in 1940 by Ulam 1 . The case of approximately additive mappings was solved by Hyers 2 . In 1978, Rassias 3 generalized Hye...
This is the rst of two papers on the zero-viscosity limit for the incompressible Navier-Stokes equations in a half-space. In this paper we prove short time existence theorems for the Euler and Prandtl equations with analytic initial data in either two or three spatial dimensions. The main technical tool in this analysis is the abstract Cauchy-Kowalewski theorem. For the Euler equations, the pro...
In this paper we investigate the exact peroidic wave shock solutions of the Burgers equations. Our purpose is to describe the asymptotic behavior of the solution in the cauchy problem for viscid equation with small parametr ε and to discuss in particular the case of periodic wave shock. We show that the solution of this problem approaches the shock type solution for the cauchy problem of the in...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید