نتایج جستجو برای: boosting
تعداد نتایج: 14818 فیلتر نتایج به سال:
Real-time object detection is one of the core problems in computer vision. The cascade boosting framework proposed by Viola and Jones has become the standard for this problem. In this framework, the learning goal for each node is asymmetric, which is required to achieve a high detection rate and a moderate false positive rate. We develop new boosting algorithms to address this asymmetric learni...
Bagging and boosting are among the most popular resampling ensemble methods that generate and combine a diversity of classifiers using the same learning algorithm for the base-classifiers. Boosting algorithms are considered stronger than bagging on noisefree data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, i...
Breiman s bagging and Freund and Schapire s boosting are recent methods for improving the predictive power of classi er learning systems Both form a set of classi ers that are combined by voting bagging by generating replicated boot strap samples of the data and boosting by ad justing the weights of training instances This paper reports results of applying both techniques to a system that learn...
In this paper, we propose ADTreesLogit, a model that integrates the advantage of ADTrees model and the logistic regression model, to improve the predictive accuracy and interpretability of existing churn prediction models. We show that the overall predictive accuracy of ADTreesLogit model compares favorably with that of TreeNet®, a model which won the Gold Prize in the 2003 mobile customer chur...
RegionBoost is one of the classical examples of Boosting with dynamic weighting schemes. Apart from its demonstrated superior performance on a variety of classification problems, relatively little effort has been devoted to the detailed analysis of its convergence behavior. This paper presents some results from a preliminary attempt towards understanding the practical convergence behavior of Re...
Gradient tree boosting is a prediction algorithm that sequentially produces a model in the form of linear combinations of decision trees, by solving an infinite-dimensional optimization problem. We combine gradient boosting and Nesterov’s accelerated descent to design a new algorithm, which we call AGB (for Accelerated Gradient Boosting). Substantial numerical evidence is provided on both synth...
Boosting is a simple yet powerful modeling technique that is used in many machine learning and data mining related applications. In this paper, we propose a novel scale-space based boosting framework which applies scale-space theory for choosing the optimal regressors during the various iterations of the boosting algorithm. In other words, the data is considered at different resolutions for eac...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید