It is shown that the existential theory of G with rational constraints, over an HNN-extension G = 〈H, t; tat = φ(a)(a ∈ A)〉 is decidable, provided that the same problem is decidable in the base group H and that A is a finite group. The positive theory of G is decidable, provided that the existential positive theory of G is decidable and that A and φ(A) are proper subgroups of the base group H w...