نتایج جستجو برای: یکنوایی ماکسیمال
تعداد نتایج: 352 فیلتر نتایج به سال:
یک جبر گلفند-مازور عبارت است از یک جبر a روی میدان f همراه با توپولوژیt به طوری که اعمال جبری پیوسته بلشد و برای هر ایده آل مدولار ماکسیمال چپ یا راست mاز a، a/m به طور توپولوژیکی با میدان f یکریخت باشد. در این پایان نامه به بررسی خواص پایه ای جبرهای گلفند-مازور می پردازیم. از آن جمله ایده آل های مدولار ماکسیمال و مختلط سازی جبرهای گلفند-مازور حقیقی را عنوان می کنیم. به علاوه اگر (a,b) یک زوج ا...
فرض کنید a یک جبر باناخ باشد.دوگان دوم a با ضرب آرنز به یک جبر باناخ تبدیل می شود. در این پایان نامه خواص مقدماتی دوگان دوم a را بررسی می کنیم.بویژه برخی قضایا درباره ی ایدال های ماکسیمال منظم و رادیکال دوگان دوم a را بیان و اثبات می کنیم.چنانچه g گروه موضعا فشرده باشد دوگان دوم جبرگروهی l1(g) را با ضرب آرنز مجهز می کنیم. بسیاری از خواص اساسی آنرا بررسی می کنیم. بویژه نشان داده می شود رادیکال l...
(c(x نمایش حلقه ی توابع پیوسته روی فضای تیخونف x و p ایدال اول از (c(x است. ابتدا حوزه ی ارزه(یعنی برای هر دو عنصر غیر صفر یکی دیگری را عاد کند) معرفی می شود و در ادامه sv-فضاها (یعنی هر ایدال اول آن اول ارزه باشد) بررسی می شوند. سپس تقریبا sv-فضاها(یعنی هر ایدال ماکسیمال آن شامل یک ایدال اول ارزه مینیمال باشد) و شبه sv-فضاها(یعنی هر ایدال ماکسیمال حقیقی و غیر مینیمال آن شامل یک ایدال اول ار...
فرض کنیم g یک گروه و aut(g) گروه خودریختی های g باشد. گروه g را a(g) - گروه گوییم هرگاه مجموعه خودریختی های جابه جاشونده آن، a(g) ، زیرگروهی ازaut(g) باشد. آنچه برای ما جالب است بررسی خودریختی های جابه جاشونده یک گروه و پاسخ به این پرسش است که چه شرایطی در گروه g ایجاب می کند که g یک a(g) - گروه باشد؟. برای این منظور، رده های خاصی از p- گروهها، شامل p- گروههای فراخاص، ...
در این پایان نامه ابتدا به بیان مفهوم توابع مقعر روی منیفلدهای ریمنی می پردازیم و یک مثال از این نوع از توابع را ارائه می دهیم . سپس مفهوم میدان برداری یکنوای پایا روی منیفلدهای ریمنی رامعرفی کرده و چندین مثال مختلف از آن را ارائه می کنیم. سپس ارتباط این دو مفهوم را طی چند قضیه بررسی می کنیم . در پایان نیز مفهوم تقعر کاذب و یکنوایی پایای کاذب را معرفی کرده و ارتباط شان را با مفاهیم فوق الذکر بر...
در سراسر این رساله، یک حلقه جابجایی، یکدار و غیر بدیهی و یک - مدول یکانی می باشد. زیر مدول سره از را یک زیر مدول اول می نامند هرگاه به ازای هر و ، ایجاب کند یا . گردایه همه زیر مدولهای اول (ماکسیمال) مدول را با نماد ( ) نمایش می دهیم. نگاشتهای و را به ترتیب نگاشتهای طبیعی طیف اول و طیف ماکسیمال مدول می نامند. یک به یک و پوشا بودن این نگاشتها، نقش بسیار مهمی در مطالعه توپولوژی های زاریس...
در این پایان نامه گراف معادل حلقه تعویض پذیر و یکدار r رامورد بررسی قرار می دهیم که دو راس a وb در آن تشکیل یال می دهند اگر داشته باشیم و در ادامه زیرگراف p2(r) را زیرگراف وابسته به عناصر غیریکه حلقه r تعریف می کنیم و در ادامه خواص گراف p2(r)-j(r) را بررسی می کنیم. می دانیم اگر u(r) عناصر یک حلقه r باشد آن گاه طبق تعریف اولیه شارما از یال در p(r) داریم به هر راس از r(r) متصل خواهد بود و این نشا...
فرض کنیم $sigma(x)$, گردایه همه زیرجبرهایی از $c(x)$ شامل $c^*(x)$ باشد. مطالعه ایدآل ها در $c(x)$ بستگی به این حقیقت دارد که اگر $i$ یک ایدآل سره در $c(x)$ باشد, آنگاه $z(i)$ یک $z$ -پالایه روی $x$ است. اما این مساله در زیرجبر دلخواه $a(x)in sigma(x)$ لزوما صادق نیست. ما در این پایان نامه, با فرض این که $x$ یک فضای {f تیخونف }باشد, یک نوع جدید از ایدآل ها در $a(x)...
یک پوشش برای گروه مفروض g، عبارت است از گردایه ای از زیرگروههای سره ی g که اجتماع آنها برابرg است. پوششی را کاهش یافته می گوییم که هیچ یک از زیرمجموعه های سره ی آن، پوشش نباشند و همچنین پوششی را ماکسیمال می گوییم که همه ی اعضای آن زیرگروه ماکسیمال باشند. یک پوشش با n عضو برای عدد صحیح n>2، n- پوشش نامیده می شود. اشتراک همه ی اعضای پوشش را با d نشان داده و هرگاه ?core?_g d=d_g=1 باشد می گوییم...
تعیین تعداد جواب های معادله ای به شکل x^p^k=a که در آن a عضوی از گروه مفروض است در مشخص کردن ساختار آن گروه تعیین کننده است.در سال 1931 کولاکف ثابت کرد که در یک p-گروه غیر دوری (p فرد) تعداد جواب های x^p^k=1 مضربی از{ p^{k+1 است به شرط آنکه نمای گروه مضربی از p^k باشد. هرگاه a عضو دلخواهی از گروه باشد در اینصورت تعداد جواب های x^p^k=a برای p-گروه غیردوری که 2-گروه رده ماکسیمال نیست و نمای آن حد...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید