نتایج جستجو برای: فضاهای متریک فازی کامل

تعداد نتایج: 72927  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه هرمزگان - دانشکده علوم انسانی و مدیریت 1389

در این پزوهش به معرفی ساختارها و تعاریف اساسی هندسه درشت بافت می پردازیم. و با بیان ایده نگاشت های درشت بافت بین فضاهای متریک آغاز می کنیم. سپس انواع مختلف ساختارهای درشت بافت مانند ساختار درشت بافت کراندار، ساختار درشت بافت سره و ساختار درشت بافت توپولوژیک را مطالعه خواهیم کرد. بعد از معرفی مختصر موضوع به بحث درباره مطالبی در هندسه با مقیاس بزرگ مانند بعد مجانبی،بعد مجانبی اسوآد-ناگاتا در فض...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه هرمزگان 1389

مفهوم بعد در دو رسته مورد بررسی قرار می گیرد: رسته فضاهای متریک جداپذیربا نگاشت های لیپشیزو رسته فضاهای متریک جداپذیر با نگاشت های یکنواخت . یک عملکرد یکسان بعد در مقیاس بزرگ و مقیاس کوچک را در نظر می گیریم و نشان خواهیم داد که در همه رسته ها یک فضا داری بعد صفر است اگر و فقط اگر فضای فرامتریک باشد.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده ریاضی 1393

هدف از پایان نامه، مطالعه برخی از خواص متریک های اقلیدسی، شبه هذلولوی و هذلولوی و استفاده از متریک های فوق در مشخص سازی های فضاهای برگمن می باشد. علاوه بر آن اثر عملگر بالابر متقارن را روی فضاهای برگمن وزن دار مورد مطالعه کرده و برخی از خواص عملگر را مورد بررسی قرار میدهیم.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه بوعلی سینا - دانشکده علوم پایه 1390

در این پایان نامه وجود نقاط ثابت مقید از انقباض ها را روی فضاهای متریک کامل از دید کلی و نقاط موضعی مطالعه می کنیم . در حقیقت تعمیم هایی از نتایج مربوط به لیم داونینگ و کرک و دیگران را اثبات می کنیم . همچنین بعضی ویژگی ها از توپولوژی تراگردی از فریگون و گراناس از انقباض ها تحت شرط هایی در نظر گرفته شده است .

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه اراک - دانشکده علوم پایه 1389

در سال 1922 باناخ قضیه ای را برای وجود و یکتایی نقطه ثابت توابع انقباضی روی فضاهای متریک کامل بیان و اثبات کرد و در سال های بعد توسیع ها و کاربردهای فراوانی از این قضیه ارائه شد. ولی این قضایا و توسیع ها برای وجود نقطه ثابت توابع غیرانبساطی نتیجه به ما نمی دهند. در این پایان نامه قضایایی برای وجود نقطه ثابت توابع غیرانبساطی (تک مقدار و مجموعه ای مقدار )که روی فضاهای ابرمحدب تعریف می شوند ارائه ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه اراک - دانشکده علوم پایه 1393

فرض کنیم فضاهای فشرده ی هاوسدرف باشند، aیک زیر فضای خطی-مختلط نیم x و y فضاهای فشرده ی هاوسدرف باشند، aیک زیر فضای خطی-مختلطc (x ) باشد که به نرم یکنواخت مجهز شده است و t: a c (y) یک نگاشت خطی –حقیقی طولپای باشد. هدف ما در این پایان نامه مشخص کردن ساختار t تحت شرایط خاصی بر aو t(a) است. بالاخص، در حالتی که a یک فضای تابعی یکنواخت بر x است و t(a) یک زیر فضای خطی-حقیقی c(y) است که در خاصیت تفکیک...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه اراک - دانشکده علوم 1392

در این پایان نامه به مطالعه ساختارهای مرتبط پرداخته و با در نظر گرفتن تانسور ?-موازی h، روی منیفلد مرتبط متریک، نشان می دهیم این منیفلدها یا k-مرتبط بوده و یا (k,?)-فضا می باشند. به ویژه ثابت خواهیم کرد که cr-ساختار وابسته انتگرال پذیر است. در ادامه منیفلدهای مرتبط را همراه با یک متریک شبه ریمانی وابسته و با تأکید بر شباهت ها و تفاوت هایش با حالت ریمانی، تحت یک مطالعه اصولی، معرفی خواهیم نمود.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه مراغه - دانشکده علوم پایه 1394

در این پایان نامه، هدف ارائه برخی خواص فضای عملگرهای خطی ضعیفا کراندار فازی باعملگر نرم بگ و سامانتا (samanta and bag) روی فضاهای نرمدار فازی فلبین است. در ادامه کامل بودن این فضا مورد مطالعه قرار خواهد گرفت. با مثالهای نقض، نشان داده خواهد شد که قضیه نگاشت معکوس و قضیه باناخ- استین هاوس (theorem "steinhaus s –banach) برای این حالت فازی برقرار نیست. همچنین به طور خلاصه فضاهای فازی نرمدار با بعد...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تفرش - دانشکده ریاضی 1389

چکیده : این پایان نامه شامل چهار فصل می باشد در فصل اول برخی از تعریف ها ، مفاهیم و لم های اساسی که در فصول بعدی مورد استفاده قرار می گیرند ارائه می گردد . در فصل دوم مخروط ، مخروط نرمال ، مخروط منظم ، و برخی ویژگیهای آنها معرفی شده و سپس فضای متریک مخروطی را بیان کرده و برخی تعریف ها و قضیه ها در فضای متری را به فضای متریک مخروطی تعمیم داده ایم و سپس تعدادی از قضیه های نقطه ی ثابت نگاشت های ...

هندسه ناجابجایی، هندسه فضاهای کوانتمی را مطالعه می کند. به عبارت ساده تر، این کار به معنی مطالعه خواص هندسی جبرهای ناجابجایی است. اساس کار بر توجه به این نکته است که رسته های مختلفی از فضاها را می توان به وسیله جبرهای جابه جایی نگاشت ها بر آنها کاملا توصیف کرد. در این صورت به یک جبر جابجایی می توان به عنوان جبر نگاشت ها بر یک فضای ناجابجایی نگریست. حال سوال این است: خاصیت هندسی یک جبر ناجابجای...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید