نتایج جستجو برای: فردهلم
تعداد نتایج: 264 فیلتر نتایج به سال:
ابتدا تقریب سینک را بررسی نموده سپس حل عددی معادلات انتگرال فردهلم نوع دوم را با استفاده از روش هم محلی سینک ارائه می دهیم. همچنین همگرایی تقریب سینک را برای این دسته از معادلات انتگرالی به صورت تحلیلی بررسی کرده و نشان می دهیم مرتبه همگرایی روش، نمایی و به صورت ((o(e^(-k?n است که k مستقل از n می باشد.
دراین پایان نامه روش جدیدی برای حل معادلات انتگرال کوشی نوع اول ارائه می دهیم. یک معادله انتگرال منظم شده را در نظر می گیریم سپس آنرا به فرم کانونی مناسب برای استفاده از روش تجزیه آدومیان تبدیل می کنیم و یک جواب تجزیه از معادله انتگرال منظم را بدست می آوریم و در ادامه همگرایی روش ترکیبی جدیدی را ثابت می کنیم. به عنوان پارامتر منظم میل می کند، جواب بدست آمده یک جواب تقریبی به اندازه کافی خوب برا...
فرض کنید t یک عملگر خطی کراندار روی یک فضای باناخ x باشد. مدار تحت t به صورت تعریف می شود و مدارهای ضعیف تحت t دنباله های بفرم هستند جایی که ما مروری از نتایج مربوط به مدارها و مدارهای ضعیف از عملگر t را ارائه می دهیم. نتایج عمیق و مسائل تئوری عملگرها ممکن است با استفاده از مفهوم مدارها فرمولبندی شوند. بعنوان مثال، عملگر t هیچ زیرفضای پایای غیر بدیهی ندارد اگر و فقط اگر مدار هر بردار غیر صفر x...
در این پایان نامه، با بکارگیری موجک های دابیشز در روش گالرکین به حل معادلات فردهلم نوع دوم خطی، غیرخطی و تکین پرداخته شده است . بعد از گسسته سازی، معادلات انتگرال خطی و غیرخطی بترتیب به یک دستگاه خطی و غیرخطی از معادلات تبدیل می شوند. برای حالت خطی می توان ماتریس را توسط تبدیل سریع موجک به یک ماتریس متقارن و تنک تبدیل نمود. مزیت اصلی روش ارائه شده در این نوشتار نسبت به سایر روش ها، محاسبه ...
در بعضی از معادلات انتگرال، محاسبه جواب دقیق کار دشواری است، در چنین مواردی جواب تقریبی این معادلات را به دست می آوریم. به این منظور، ابتدا روش های عددی را روی معادلات انتگرالی که جواب دقیقشان را داریم اعمال می کنیم. اگر خطا کوچک باشد و جواب تقریبی به جواب دقیق نزدیک باشد، رویه های موردنظر روش های خوبی هستند، سپس همگرایی آن ها را ثابت می کنیم. بنابراین می توانیم از این روش ها برای به دست آورد...
در این پایان نامه ساختار پایه های چند مقیاسی را در فضای اصلی x_n و در فضای آزمایشy_n برای حل عددی معادلات انتگرال فردهلم نوع دوم با هسته ضعیف را ارائه می دهیم. و نشان می دهیم درجات این پایه ها در فضای y_n از درجات پایه ها در فضای x_n کمتر می باشد. همچنین خواص این پایه ها شامل گشتاورهای صفر، محمل های فشرده و پایداری را بررسی می کنیم.
با انگیزه دهی مشکلِ در حال توسعه ی روش های دقیق و روش های زمان - گامیِ پایدار، برای معادلات پتانسیلی تک لایه ای، برای پراکندگی صوتی یک سطح، ما نتایج همگرایی جدیدی را حاضر کردیم که برای تقریب های چندجمله ای تکه ای گالرکین ناپیوسته $dg$ از یک معادله ی انتگرالی ولترای نوع اول از نوع هسته ی پیچشی است، که هسته ی $k$ هموار و در $k(0) eq 0$ صدق می کند. ما نشان می دهیم که ی...
چکیده نظریه معادلات انتگرال یکی از مهمترین شاخه های آنالیز ریاضی است .اصولا" اهمیت آن از لحاظ مسائل مقدار مرزی در تئوری معادلات با مشتقات جزئی است . معادلات انتگرال درخیلی از مسائل فیزیک و فنی ظاهر میشوند.در تحقیقات قرن اخی درنظریه کشانی این نوع معادلات نقش مهمی را بازی کرده اند،بخصوص آن دسته ای از آنها که به معادلات انتگرال منفرد شهرت دارند . معادلات انتگرال برای سالهای زیادی است که در ریاضی ظ...
در این تحقیق نشان داده شده است که حل معادلات فردهلم وقتی که هسته متقارن یا هرمیتی نیست با استفاده از فرم ژردان و تجزیه مقدار تکین امکان پذیر است که راه را برای روش های عددی باز می کند.
در این پایان نامه، به مطالعه یک روش عددی برای حل معادلات انتگرال - دیفرانسیل فردهلم غیرخطی، با ترکیبی از توابع بلوک پالس و چند جمله ای برنشتاین نرمال شده می پردازیم.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید