نتایج جستجو برای: شبکه ی عصبی مصنوعی تکاملی

تعداد نتایج: 145023  

ژورنال: مهندسی منابع آب 2018

یکی از متداول ترین روش های انحراف آب در شبکه های آبیاری و سیستم های زهکشی استفاده از آبگیرهای جانبی می باشد. به علت پیچیدگی پروفیل سرعت در محل جداسازی کانال فرعی از کانال اصلی، اندازه گیری سرعت متوسط جریان در محل آبگیر ها بسیار مشکل می باشد. در این مطالعه با استفاده از شبکه عصبی مصنوعی اقدام به محاسبه ی پروفیل سرعت متوسط در آبگیر ها با کمترین خطا شده است. برای این مدل سازی گام های زیر برداشته ش...

ژورنال: :راهبردهای بازرگانی 0
طهمورث حسن قلی پور مهدی میری

امروزه استفاده از شبکه های عصبی در بسیاری از حوزه ها مانند مهندسی برق، مکانیک، عمران، بازرگانی و مدیریت رایج است. استفاده از شبکه های عصبی در تحقیقات بازار، از مدیریت گردشگری شروع شده و به سایر حوزه های بازاریابی، از جمله تقسیم بازار و انتخاب مشتریان هدف گسترش پیدا کرده است. در این تحقیق با توجه به ضرورت شناسایی مشتریان هدف برای بانک کشاورزی برای تقسیم مشتریان حساب جاری مهر بانک کشاورزی، از شبک...

ژورنال: :فصلنامه علمی - پژوهشی مهندسی منابع آب 2014
فرزاد حسن پور زینب شیخعلی پور

روندیابی سیلاب به دلیل فراهم نمودن امکان پیش بینی چگونگی طغیان و فروکش کردن آن در رودخانه، یکی از مهمترین مسائل در مهندسی رودخانه است. از آن جا ی که سیلاب جریانی متغیر غیردایمی است، لذا روندیابی آن نیاز به داده های گسترده از رود ها و آمار دقیقی از ایستگاه­های آبسنجی دارد. روش ماسکینگام، به دلیل سادگی آن، دارای کاربرد بیش­تری در میان روش­های روندیابی سیلاب می باشد. از طرفی، استفاده از روش­های هو...

ژورنال: :پژوهش های فرسایش محیطی 0
علی اکبر متکان تهران روشنک درویش زاده [email protected] امین حسینی اصل تهران محسن ابراهیمی خوسفی تهران

پوشش گیاهی یکی از مهم ترین اجزای اکوسیستم هاست و دانستن درصد پوشش گیاهی سطحی برای بررسی میزان فرسایش خاک، شدت خشکسالی، مطالعات زیست محیطی، منابع طبیعی و غیره بسیار ضروری است. هدف از این تحقیق محاسبه ی درصد پوشش گیاهی با استفاده از تصاویر ماهواره ای و شبکه های عصبی مصنوعی (پرسپترون چندلایه) می باشد. بدین منظور از تصویر ماهواره ای alos مربوط به تاریخ 27 تیر ماه 1388 و شبکه های عصبی مصنوعی پرسپترو...

 پیش‌بینی فراورده‌های (هیدروژن و کربن مونوکسید) تبدیل خشک متان به‌کمک پلاسما در فشار جوی با استفاده از شبکه عصبی مصنوعی شبیه‌سازی شد. داده‌های تجربی موردنیاز برای مدل‌سازی شبکه عصبی مصنوعی از یک واکنشگاه پلاسمایی تخلیه کرونا جمع‌آوری شد. اثر عامل‌های فرایندی (توان تخلیه پلاسما، دبی خوراک ورودی) بر کارایی تبدیل متان و گزینش‌پذیری نسبت به فراورده‌های مورد بررسی قرار گرفتند. شبکه پیش‌خور با الگوری...

هدف تحقیق حاضر مقایسه توانایی اطلاعات حسابداری جهت پیش بینی نوسان شاخص های بورس اوراقبهادار با استفاده از روشهای هوشمند ماشینبردار پشتیبان و شبکه عصبی مصنوعی و روش کلاسیکرگرسیون لجستیک می باشد. نمونه آماری تحقیق شامل 91 شرکت پذیرفته شده بورس اوراق بهادار تهراندر قالب 9 صنعت در محدوده زمانی 1382 الی 1391 است. با در نظر گرفتن 11 متغیر مالی شرکتی، نتایجمطالعه نشان می دهد که علیرغم توانایی پیشبینی ...

محمد شعبانی

تعیین میزان فرسایش خاک و بار رسوبی رودخانه عملاً کاری مشکل است؛ بنابراین روش های مختلفی برای آن ها پیشنهاد شده است. یکی از روش های نوین در حل مسائل مهندسی آب و همچنین برآورد رسوب معلق رودخانه ها، استفاده از شبکه عصبی مصنوعی است که با الگو برداری از شبکه مغز انسان، ضمن اجرای فرآیند آموزش، روابط درونی بین داده ها را کشف کرده و به موقعیت های دیگر تعمیم می دهد. هدف از انجام این تحقیق، بررسی کارآیی ر...

افلاتوکسین B1 (AFB1) سمی ترین گروه آفلاتوکسین‌هاست که باعث آلودگی محصولات کشاورزی شده و اثرات مرگ باری بر سلامت انسان دارد. تشخیص AFB1 در مواد غذایی و خوراکی توسط بیوسنسورها سریع، کم هزینه و دقیق است. در این مقاله به مدلسازی و شبیه‌سازی ‌واکنش‌های شیمیایی در بیوسنسور پتانسیومتری AFB1 جهت تعیین ثابت‌های  بهینه نرخ واکنش پرداخته شده است. شبیه‌سازی ‌واکنش‌های شیمیایی توسط نرم افزار COMSOL...

بهزاد قنبریان علویجه سمانه سهرابی عبدالمجید لیاقت,

ویژگی­های هیدرولیکی خاک همچون هدایت هیدرولیکی اشباع و غیراشباع در مطالعات زیست محیطی نقش مهمی را ایفا می­نمایند.  از آنجائی­که اندازه­گیری مستقیم این قبیل ویژگی­های هیدرولیکی خاک امری وقت­گیر و هزینه­بر است روش­های غیرمستقیمی چون توابع انتقالی و شبکه­های عصبی مصنوعی بر مبنای پارامترهای سهل الوصول خاک توسعه یافته­اند.  در این خصوص در این مطالعه، از شبکه عصبی مصنوعی به­ منظور تخمین هدایت هیدرولیک...

ژورنال: :مجله اپیدمیولوژی ایران 0
آذر اسد آبادی a asadabadi msc, department of biostatistics & epidemiology, school of health, kerman university of medical sciences, iranکارشناس ارشد آمار زیستی، گروه آمار زیستی و اپیدمیولوژی دانشکده بهداشت و مرکز تحقیقات مدل سازی در سلامت دانشگاه علوم پزشکی کرمان، کرمان، ایران عباس بهرامپور a bahrampour professor, phd, modeling of health research center, department of biostatistics & epidemiology, school of health, kerman university of medical sciences, iranاستاد گروه آمار زیستی و اپیدمیولوژی دانشکده بهداشت و مرکز تحقیقات مدل سازی در سلامت دانشگاه علوم پزشکی کرمان، کرمان، ایران علی اکبر حقدوست aa haghdoost associate professor, phd, modeling of health research center, department of biostatistics & epidemiology, school of health, kerman university of medical sciences, iranاستاد گروه آمار زیستی و اپیدمیولوژی دانشکده بهداشت و مرکز تحقیقات مدل سازی در سلامت دانشگاه علوم پزشکی کرمان، کرمان، ایران

مقدمه و اهداف: در سال‎های اخیر، توجه قابل ملاحظه‎ای به مدل‎های آماری برای طبقه‎بندی داده‎های پزشکی با توجه به بیماری‎های مختلف و پیامدهای آن‎ها شده است. شبکه‎های عصبی مصنوعی به دلیل عدم نیاز به پیش فرض با موفقیت برای تشخیص الگو و پیش‎بینی در برخی از مطالعه های بالینی استفاده شده‎اند. هدف از این مطالعه، مقایسه دو مدل آماری شبکه عصبی مصنوعی و رگرسیون لجستیک برای پیش بینی بقای بیماران مبتلا به سرط...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید