نتایج جستجو برای: روش e v
تعداد نتایج: 1633869 فیلتر نتایج به سال:
u n d o u b t e d l y, i n t h e l a s t d e c a d e s, t h e a s s e t p r i c i n g m o d e l i so n e o f m o s t i m p o r t a n t a n d, a t t h e s a m e t i m e, a t t r a c t i v e, f i n a n c e a r e a s. c a p m h a s b e e n t h e d o m i n a n t m o d e l i n t h i s s e c t i o n f o r m o r e t h a n 40 y e a r s. o n e r e a s o n i s i t s s t r o n g b a s e, w h i c h h a s b...
Let G and H be connected graphs. The tensor product G + H is a graph with vertex set V(G+H) = V (G) X V(H) and edge set E(G + H) ={(a , b)(x , y)| ax ∈ E(G) & by ∈ E(H)}. The graph H is called the strongly triangular if for every vertex u and v there exists a vertex w adjacent to both of them. In this article the tensor product of G + H under some distancebased topological indices are investiga...
For the edge e = uv of a graph G, let nu = n(u|G) be the number of vertices of G lying closer to the vertex u than to the vertex v and nv= n(v|G) can be defined simailarly. Then the ABCGG index of G is defined as ABC...
An injective map f : E(G) → {±1, ±2, · · · , ±q} is said to be an edge pair sum labeling of a graph G(p, q) if the induced vertex function f*: V (G) → Z − {0} defined by f*(v) = (Sigma e∈Ev) f (e) is one-one, where Ev denotes the set of edges in G that are incident with a vetex v and f*(V (G)) is either of the form {±k1, ±k2, · · · , ±kp/2} or {±k1, ±k2, · · · , ±k(p−1)/2} U {k(p+1)/2} accordin...
a l t h o u g h m o s t c o m p a n i e s s p e n d l e s s o n p r o d u c t d e s i g n, e x p e r i e n c e s h o w s t h a t, t h e s e c o m p a n i e s h a v e t o p a y h i g h e r c o s t s d u e t o p r o d u c t i o n p r o b l e m s o r l o s s o f m a r k e t. l i t e r a t u r e s t u d i e s s h o w t h a t t h e d e s i g n f o r s i x s i g m a i s a p o w e r f u l a p p r o a ...
Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...
let g(v,e) be a graph with p vertices and q edges. a graph g is said to have an odd mean labeling if there exists a function f : v (g) → {0, 1, 2,...,2q - 1} satisfying f is 1 - 1 and the induced map f* : e(g) → {1, 3, 5,...,2q - 1} defined by f*(uv) = (f(u) + f(v))/2 if f(u) + f(v) is evenf*(uv) = (f(u) + f(v) + 1)/2 if f(u) + f(v) is odd is a bijection. a graph that admits an odd mean lab...
If G = (V, E, σ) is a finite signed graph, a function f : V → {−1, 0, 1} is a minusdominating function (MDF) of G if f(u) +summation over all vertices v∈N(u) of σ(uv)f(v) ≥ 1 for all u ∈ V . In this paper we characterize signed paths and cycles admitting an MDF.
an h-magic labeling in a h-decomposable graph g is a bijection f : v (g) ∪ e(g) → {1, 2, ..., p + q} such that for every copy h in the decomposition, σνεv(h) f(v) + σeεe(h) f(e) is constant. f is said to be h-e-super magic if f(e(g)) = {1, 2, · · · , q}. a family of subgraphs h1,h2, · · · ,hh of g is a mixed cycle-decomposition of g if every subgraph hi is isomorphic to some cycle ck, for k ≥ ...
An H-magic labeling in a H-decomposable graph G is a bijection f : V (G) ∪ E(G) → {1, 2, ..., p + q} such that for every copy H in the decomposition, ΣνεV(H) f(v) + ΣeεE(H) f(e) is constant. f is said to be H-E-super magic if f(E(G)) = {1, 2, · · · , q}. A family of subgraphs H1,H2, · · · ,Hh of G is a mixed cycle-decomposition of G if every subgraph Hi is isomorphic to some cycle Ck, for k ≥ ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید